Concept

Peripheral chemoreceptors

Peripheral chemoreceptors (of the carotid and aortic bodies) are so named because they are sensory extensions of the peripheral nervous system into blood vessels where they detect changes in chemical concentrations. As transducers of patterns of variability in the surrounding environment, carotid and aortic bodies count as chemosensors in a similar way as taste buds and photoreceptors. However, because carotid and aortic bodies detect variation within the body's internal organs, they are considered interoceptors. Taste buds, olfactory bulbs, photoreceptors, and other receptors associated with the five traditional sensory modalities, by contrast, are exteroceptors in that they respond to stimuli outside the body. The body also contains proprioceptors, which respond to the amount of stretch within the organ, usually muscle, that they occupy. As for their particular function, peripheral chemoreceptors help maintain homeostasis in the cardiorespiratory system by monitoring concentrations of blood borne chemicals. These polymodal sensors respond to variations in a number of blood properties, including low oxygen (hypoxia), high carbon dioxide (hypercapnia), and low glucose (hypoglycemia). Hypoxia and hypercapnia are the most heavily studied and understood conditions detected by the peripheral chemoreceptors. Glucose is discussed in a later section. Afferent nerves carry signals back from the carotid and aortic bodies to the brainstem, which responds accordingly (e.g. increasing ventilation). Both carotid bodies and aortic bodies increase sensory discharge during hypoxia. Carotid bodies are considered the primary peripheral chemoreceptor and have been shown to contribute more to a hypoxic response. However, in the chronic absence of the carotid body, the aortic body is able to perform a similar respiratory regulatory role, suggesting that it possesses efficacious mechanisms of signal transduction as well.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.