Summary
In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element a has a multiplicative inverse, that is, an element usually denoted a^–1, such that a a^–1 = a^–1 a = 1. So, (right) division may be defined as a / b = a b–1, but this notation is avoided, as one may have a b^–1 ≠ b^–1 a. A commutative division ring is a field. Wedderburn's little theorem asserts that all finite division rings are commutative and therefore finite fields. Historically, division rings were sometimes referred to as fields, while fields were called "commutative fields". In some languages, such as French, the word equivalent to "field" ("corps") is used for both commutative and noncommutative cases, and the distinction between the two cases is made by adding qualificatives such as "corps commutatif" (commutative field) or "corps gauche" (skew field). All division rings are simple. That is, they have no two-sided ideal besides the zero ideal and itself. All fields are division rings, and every non-field division ring is noncommutative. The best known example is the ring of quaternions. If one allows only rational instead of real coefficients in the constructions of the quaternions, one obtains another division ring. In general, if R is a ring and S is a simple module over R, then, by Schur's lemma, the endomorphism ring of S is a division ring; every division ring arises in this fashion from some simple module. Much of linear algebra may be formulated, and remains correct, for modules over a division ring D instead of vector spaces over a field. Doing so, one must specify whether one is considering right or left modules, and some care is needed in properly distinguishing left and right in formulas. In particular, every module has a basis, and Gaussian elimination can be used. So, everything that can be defined with these tools works on division algebras. Matrices and their products are defined similarly.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.