Concept

# Vandermonde's identity

Summary
In combinatorics, Vandermonde's identity (or Vandermonde's convolution) is the following identity for binomial coefficients: :{m+n \choose r}=\sum_{k=0}^r{m \choose k}{n \choose r-k} for any nonnegative integers r, m, n. The identity is named after Alexandre-Théophile Vandermonde (1772), although it was already known in 1303 by the Chinese mathematician Zhu Shijie. There is a q-analog to this theorem called the q-Vandermonde identity. Vandermonde's identity can be generalized in numerous ways, including to the identity : { n_1+\dots +n_p \choose m }= \sum_{k_1+\cdots +k_p = m} {n_1\choose k_1} {n_2\choose k_2} \cdots {n_p\choose k_p}. Proofs Algebraic proof In general, the product of two polynomials with degrees m and n, respectively, is given by :\biggl(\sum_{i=0}^m a_ix^i\biggr) \biggl(\sum_{j=0}^n b_jx^j\biggr) = \sum_{r=0}^{m+n}\biggl(\sum_{k=0}^r a_k b_{r-k}\biggr) x^r, where we use the convention that ai&nb
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Related people

Related units