Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula M1/nn+(AlO2)-(SiO2)x・yH2O where M1/nn+ is either a metal ion or H+. These positive ions can be exchanged for others in a contacting electrolyte solution. H+ exchanged zeolites are particularly useful as solid acid catalysts.
The term zeolite was originally coined in 1756 by Swedish mineralogist Axel Fredrik Cronstedt, who observed that rapidly heating a material, believed to have been stilbite, produced large amounts of steam from water that had been adsorbed by the material. Based on this, he called the material zeolite, from the Greek ζέω (zéō), meaning "to boil" and λίθος (líthos), meaning "stone".
Zeolites occur naturally but are also produced industrially on a large scale. , 253 unique zeolite frameworks have been identified, and over 40 naturally occurring zeolite frameworks are known. Every new zeolite structure that is obtained is examined by the International Zeolite Association Structure Commission (IZA-SC) and receives a three letter designation.
Zeolites are white solids with ordinary handling properties, like many routine aluminosilicate minerals, e.g. feldspar. They have the general formula where M+ is usually H+ and Na+. The Si/Al ratio is variable, which provides a means to tune the properties. Zeolites with a Si/Al ratios higher about 3 are classified as high-silica zeolites, which tend to be more hydrophobic. The H+ and Na+ can be replaced by diverse cations, because zeolites have ion exchange properties. The nature of the cations influences the porosity of zeolites.
Zeolites have microporous structures with a typical diameter of 0.3–0.8 nm. Like most aluminosilicates, the framework is formed by linking of aluminum and silicon atoms by oxides. This linking leads to a 3-dimensional network of Si-O-Al, Si-O-Si, and Al-O-Al linkages. The aluminum centers are negatively charged, which requires an accompanying cation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
You will learn about the bonding and structure of several important families of solid state materials. You will gain insight into common synthetic and characterization methods and learn about the appl
The course is an introduction to heterogeneous catalysis for environmental protection and energy production. It focusses on catalytic exhaust gas cleaning as well as catalytic systems relevant for gas
Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the adsorbate on the surface of the adsorbent. This process differs from absorption, in which a fluid (the absorbate) is dissolved by or permeates a liquid or solid (the absorbent). Adsorption is a surface phenomenon and the adsorbate does not penetrate through the surface and into the bulk of the adsorbent, while absorption involves transfer of the absorbate into the volume of the material, although adsorption does often precede absorption.
Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or underwater, usually at temperatures from . The volcanic rock resulting from subsequent cooling is also often called lava. A lava flow is an outpouring of lava during an effusive eruption. (An explosive eruption, by contrast, produces a mixture of volcanic ash and other fragments called tephra, not lava flows.
Aluminium oxide (or Aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum in various forms and applications. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire.
Thescalable synthesis of high-temperature H-2-sieving membranesfor energy-efficient carbon capture can potentiallyenable the implementation of precombustion carbon capture at a rapidpace. Synthesis of H-2-sieving membranes for high-temperatureapplications ...
AMER CHEMICAL SOC2023
, , ,
In this study, a protocol for synthesising beta-C2S using K2SO4 as a dopant has been reported. Quantitative X-Ray diffraction was used to characterise synthesised samples. It was observed that it is possible to synthesise beta-C2S with high purity (>96 wt% ...
In the pursuit of a carbon-neutral chemical industry, minimizing fossil feedstock consumption while integrating renewable carbon sources is imperative. Surfactants, inherently amphiphilic, pose challenges in separation and recovery processes. Given their e ...