Summary
A proton pump is an integral membrane protein pump that builds up a proton gradient across a biological membrane. Proton pumps catalyze the following reaction: H+[on one side of a biological membrane] + energy H+[on the other side of the membrane] Mechanisms are based on energy-induced conformational changes of the protein structure or on the Q cycle. During evolution, proton pumps have arisen independently on multiple occasions. Thus, not only throughout nature but also within single cells, different proton pumps that are evolutionarily unrelated can be found. Proton pumps are divided into different major classes of pumps that use different sources of energy, have different polypeptide compositions and evolutionary origins. Transport of the positively charged proton is typically electrogenic, i.e. it generates an electric field across the membrane also called the membrane potential. Proton transport becomes electrogenic if not neutralized electrically by transport of either a corresponding negative charge in the same direction or a corresponding positive charge in the opposite direction. An example of a proton pump that is not electrogenic, is the proton/potassium pump of the gastric mucosa which catalyzes a balanced exchange of protons and potassium ions. The combined transmembrane gradient of protons and charges created by proton pumps is called an electrochemical gradient. An electrochemical gradient represents a store of energy (potential energy) that can be used to drive a multitude of biological processes such as ATP synthesis, nutrient uptake and action potential formation. In cell respiration, the proton pump uses energy to transport protons from the matrix of the mitochondrion to the inter-membrane space. It is an active pump that generates a proton concentration gradient across the inner mitochondrial membrane because there are more protons outside the matrix than inside. The difference in pH and electric charge (ignoring differences in buffer capacity) creates an electrochemical potential difference that works similar to that of a battery or energy storing unit for the cell.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.