A proton pump is an integral membrane protein pump that builds up a proton gradient across a biological membrane. Proton pumps catalyze the following reaction:
H+[on one side of a biological membrane] + energy H+[on the other side of the membrane]
Mechanisms are based on energy-induced conformational changes of the protein structure or on the Q cycle.
During evolution, proton pumps have arisen independently on multiple occasions. Thus, not only throughout nature but also within single cells, different proton pumps that are evolutionarily unrelated can be found. Proton pumps are divided into different major classes of pumps that use different sources of energy, have different polypeptide compositions and evolutionary origins.
Transport of the positively charged proton is typically electrogenic, i.e. it generates an electric field across the membrane also called the membrane potential. Proton transport becomes electrogenic if not neutralized electrically by transport of either a corresponding negative charge in the same direction or a corresponding positive charge in the opposite direction. An example of a proton pump that is not electrogenic, is the proton/potassium pump of the gastric mucosa which catalyzes a balanced exchange of protons and potassium ions.
The combined transmembrane gradient of protons and charges created by proton pumps is called an electrochemical gradient. An electrochemical gradient represents a store of energy (potential energy) that can be used to drive a multitude of biological processes such as ATP synthesis, nutrient uptake and action potential formation.
In cell respiration, the proton pump uses energy to transport protons from the matrix of the mitochondrion to the inter-membrane space. It is an active pump that generates a proton concentration gradient across the inner mitochondrial membrane because there are more protons outside the matrix than inside. The difference in pH and electric charge (ignoring differences in buffer capacity) creates an electrochemical potential difference that works similar to that of a battery or energy storing unit for the cell.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
ATP synthase is a protein that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). ATP synthase is a molecular machine. The overall reaction catalyzed by ATP synthase is: ADP + Pi + 2H+out ATP + H2O + 2H+in ATP synthase lies across a cellular membrane and forms an aperture that protons can cross from areas of high concentration to areas of low concentration, imparting energy for the synthesis of ATP.
An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts: The chemical gradient, or difference in solute concentration across a membrane. The electrical gradient, or difference in charge across a membrane. When there are unequal concentrations of an ion across a permeable membrane, the ion will move across the membrane from the area of higher concentration to the area of lower concentration through simple diffusion.
A proton pump is an integral membrane protein pump that builds up a proton gradient across a biological membrane. Proton pumps catalyze the following reaction: H+[on one side of a biological membrane] + energy H+[on the other side of the membrane] Mechanisms are based on energy-induced conformational changes of the protein structure or on the Q cycle. During evolution, proton pumps have arisen independently on multiple occasions. Thus, not only throughout nature but also within single cells, different proton pumps that are evolutionarily unrelated can be found.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Closely interfacing with bioengineering and medicine, this course provides foundational concepts in applying small-molecule chemical toolsets to probe the functions of living systems at the mechanisti
Le cours "Microbiologie pour l'ingénieur" couvre les processus microbiens principaux qui ont lieu dans l'environnement et dans des systèmes de traitement. Il présente les cycles des éléments qui sont
Ce cours présente les principes fondamentaux à l'œuvre dans les organismes vivants. Autant que possible, l'accent est mis sur les contributions de l'Informatique aux progrès des Sciences de la Vie.
The lumen of endosomal organelles becomes increasingly acidic when going from the cell surface to lysosomes. Luminal pH thereby regulates important processes such as the release of internalized ligand