Forsterite (Mg2SiO4; commonly abbreviated as Fo; also known as white olivine) is the magnesium-rich end-member of the olivine solid solution series. It is isomorphous with the iron-rich end-member, fayalite. Forsterite crystallizes in the orthorhombic system (space group Pbnm) with cell parameters a 4.75 Å (0.475 nm), b 10.20 Å (1.020 nm) and c 5.98 Å (0.598 nm).
Forsterite is associated with igneous and metamorphic rocks and has also been found in meteorites. In 2005 it was also found in cometary dust returned by the Stardust probe. In 2011 it was observed as tiny crystals in the dusty clouds of gas around a forming star.
Two polymorphs of forsterite are known: wadsleyite (also orthorhombic) and ringwoodite (isometric, Cubic crystal system). Both are mainly known from meteorites.
Peridot is the gemstone variety of forsterite olivine.
Pure forsterite is composed of magnesium, oxygen and silicon. The chemical formula is Mg2SiO4. Forsterite, fayalite (Fe2SiO4) and tephroite (Mn2SiO4) are the end-members of the olivine solid solution series; other elements such as Ni and Ca substitute for Fe and Mg in olivine, but only in minor proportions in natural occurrences. Other minerals such as monticellite (CaMgSiO4), an uncommon calcium-rich mineral, share the olivine structure, but solid solution between olivine and these other minerals is limited. Monticellite is found in contact metamorphosed dolomites.
Forsterite-rich olivine is the most abundant mineral in the mantle above a depth of about ; pyroxenes are also important minerals in this upper part of the mantle. Although pure forsterite does not occur in igneous rocks, dunite often contains olivine with forsterite contents at least as Mg-rich as (92% forsterite – 8% fayalite); common peridotite contains olivine typically at least as Mg-rich as . Due to its high melting point, olivine crystals are the first minerals to precipitate from a magmatic melt in a cumulate process, often with orthopyroxenes. Forsterite-rich olivine is a common crystallization product of mantle-derived magma.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Calcul différentiel et intégral.
Eléments d'analyse complexe.
Ultramafic rocks (also referred to as ultrabasic rocks, although the terms are not wholly equivalent) are igneous and meta-igneous rocks with a very low silica content (less than 45%), generally >18% MgO, high FeO, low potassium, and are composed of usually greater than 90% mafic minerals (dark colored, high magnesium and iron content). The Earth's mantle is composed of ultramafic rocks. Ultrabasic is a more inclusive term that includes igneous rocks with low silica content that may not be extremely enriched in Fe and Mg, such as carbonatites and ultrapotassic igneous rocks.
Fayalite (Fe2SiO4, commonly abbreviated to Fa) is the iron-rich end-member of the olivine solid-solution series. In common with all minerals in the olivine group, fayalite crystallizes in the orthorhombic system (space group Pbnm) with cell parameters a 4.82 Å, b 10.48 Å and c 6.09 Å. Fayalite forms solid solution series with the magnesium olivine endmember forsterite (Mg2SiO4) and also with the manganese rich olivine endmember tephroite (Mn2SiO4).
Igneous rock (igneous ), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava. The magma can be derived from partial melts of existing rocks in either a planet's mantle or crust. Typically, the melting is caused by one or more of three processes: an increase in temperature, a decrease in pressure, or a change in composition. Solidification into rock occurs either below the surface as intrusive rocks or on the surface as extrusive rocks.
Oxide inclusions are inevitably present in steel as a direct consequence of the steelmaking process; as a result, a cubic centimetre of modern steel will generally contain about a million of these hard and brittle micrometre-sized ceramic particles. Inclus ...
Various methods have been developed to synthesize C-S-H; however, these methods have only allowed for the successful production of pure-phase C-S-H with Ca:Si of 1.5 or less. Attempts to form higher Ca:Si ratios by these methods gives C-S-H (Ca:Si 1.5 or l ...
PERGAMON-ELSEVIER SCIENCE LTD2022
, ,
Most perovskite oxides belong to the Pbnm space group, composed of an anisotropic unit cell, A-site antipolar displacements, and oxygen octahedral tilts. Mapping the orientation of the orthorhombic unit cell in epitaxial heterostructures that consist of at ...