Cartesian ovalIn geometry, a Cartesian oval is a plane curve consisting of points that have the same linear combination of distances from two fixed points (foci). These curves are named after French mathematician René Descartes, who used them in optics. Let P and Q be fixed points in the plane, and let d(P, S) and d(Q, S) denote the Euclidean distances from these points to a third variable point S. Let m and a be arbitrary real numbers. Then the Cartesian oval is the locus of points S satisfying d(P, S) + m d(Q, S) = a.
Steiner conicThe Steiner conic or more precisely Steiner's generation of a conic, named after the Swiss mathematician Jakob Steiner, is an alternative method to define a non-degenerate projective conic section in a projective plane over a field. The usual definition of a conic uses a quadratic form (see Quadric (projective geometry)). Another alternative definition of a conic uses a hyperbolic polarity. It is due to K. G. C. von Staudt and sometimes called a von Staudt conic.
Dandelin spheresIn geometry, the Dandelin spheres are one or two spheres that are tangent both to a plane and to a cone that intersects the plane. The intersection of the cone and the plane is a conic section, and the point at which either sphere touches the plane is a focus of the conic section, so the Dandelin spheres are also sometimes called focal spheres. The Dandelin spheres were discovered in 1822. They are named in honor of the French mathematician Germinal Pierre Dandelin, though Adolphe Quetelet is sometimes given partial credit as well.
Circumconic and inconicIn Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. Suppose A, B, C are distinct non-collinear points, and let △ABC denote the triangle whose vertices are A, B, C. Following common practice, A denotes not only the vertex but also the angle ∠BAC at vertex A, and similarly for B and C as angles in △ABC. Let the sidelengths of △ABC.
Principal axis theoremIn geometry and linear algebra, a principal axis is a certain line in a Euclidean space associated with an ellipsoid or hyperboloid, generalizing the major and minor axes of an ellipse or hyperbola. The principal axis theorem states that the principal axes are perpendicular, and gives a constructive procedure for finding them. Mathematically, the principal axis theorem is a generalization of the method of completing the square from elementary algebra.
MenaechmusThere is also a Menaechmus in Plautus' play, The Menaechmi. Menaechmus (Μέναιχμος, 380–320 BC) was an ancient Greek mathematician, geometer and philosopher born in Alopeconnesus or Prokonnesos in the Thracian Chersonese, who was known for his friendship with the renowned philosopher Plato and for his apparent discovery of conic sections and his solution to the then-long-standing problem of doubling the cube using the parabola and hyperbola. Menaechmus is remembered by mathematicians for his discovery of the conic sections and his solution to the problem of doubling the cube.
FlatteningFlattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid) respectively. Other terms used are ellipticity, or oblateness. The usual notation for flattening is and its definition in terms of the semi-axes and of the resulting ellipse or ellipsoid is The compression factor is in each case; for the ellipse, this is also its aspect ratio.
ApproximationAn approximation is anything that is intentionally similar but not exactly equal to something else. The word approximation is derived from Latin approximatus, from proximus meaning very near and the prefix ad- (ad- before p becomes ap- by assimilation) meaning to. Words like approximate, approximately and approximation are used especially in technical or scientific contexts. In everyday English, words such as roughly or around are used with a similar meaning. It is often found abbreviated as approx.
Y-interceptIn analytic geometry, using the common convention that the horizontal axis represents a variable x and the vertical axis represents a variable y, a y-intercept or vertical intercept is a point where the graph of a function or relation intersects the y-axis of the coordinate system. As such, these points satisfy x = 0. If the curve in question is given as the y-coordinate of the y-intercept is found by calculating Functions which are undefined at x = 0 have no y-intercept.