Concept

Structural proof theory

Summary
In mathematical logic, structural proof theory is the subdiscipline of proof theory that studies proof calculi that support a notion of analytic proof, a kind of proof whose semantic properties are exposed. When all the theorems of a logic formalised in a structural proof theory have analytic proofs, then the proof theory can be used to demonstrate such things as consistency, provide decision procedures, and allow mathematical or computational witnesses to be extracted as counterparts to theorems, the kind of task that is more often given to model theory. Analytic proof The notion of analytic proof was introduced into proof theory by Gerhard Gentzen for the sequent calculus; the analytic proofs are those that are cut-free. His natural deduction calculus also supports a notion of analytic proof, as was shown by Dag Prawitz; the definition is slightly more complex—the analytic proofs are the normal forms, which are related to the notion of normal form in term rewriting. The term structure in structural proof theory comes from a technical notion introduced in the sequent calculus: the sequent calculus represents the judgement made at any stage of an inference using special, extra-logical operators called structural operators: in , the commas to the left of the turnstile are operators normally interpreted as conjunctions, those to the right as disjunctions, whilst the turnstile symbol itself is interpreted as an implication. However, it is important to note that there is a fundamental difference in behaviour between these operators and the logical connectives they are interpreted by in the sequent calculus: the structural operators are used in every rule of the calculus, and are not considered when asking whether the subformula property applies. Furthermore, the logical rules go one way only: logical structure is introduced by logical rules, and cannot be eliminated once created, while structural operators can be introduced and eliminated in the course of a derivation.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading