Summary
In geometry, a solid angle (symbol: Ω) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point. In the International System of Units (SI), a solid angle is expressed in a dimensionless unit called a steradian (symbol: sr). One steradian corresponds to one unit of area on the unit sphere surrounding the apex, so an object that blocks all rays from the apex would cover a number of steradians equal to the total surface area of the unit sphere, . Solid angles can also be measured in squares of angular measures such as degrees, minutes, and seconds. A small object nearby may subtend the same solid angle as a larger object farther away. For example, although the Moon is much smaller than the Sun, it is also much closer to Earth. Indeed, as viewed from any point on Earth, both objects have approximately the same solid angle as well as apparent size. This is evident during a solar eclipse. Spherical polygon area An object's solid angle in steradians is equal to the area of the segment of a unit sphere, centered at the apex, that the object covers. Giving the area of a segment of a unit sphere in steradians is analogous to giving the length of an arc of a unit circle in radians. Just like a planar angle in radians is the ratio of the length of an arc to its radius, a solid angle in steradians is the ratio of the area covered on a sphere by an object to the area given by the square of the radius of said sphere. The formula is where is the spherical surface area and is the radius of the considered sphere. Solid angles are often used in astronomy, physics, and in particular astrophysics. The solid angle of an object that is very far away is roughly proportional to the ratio of area to squared distance.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.