In probability and statistics, a natural exponential family (NEF) is a class of probability distributions that is a special case of an exponential family (EF). The natural exponential families (NEF) are a subset of the exponential families. A NEF is an exponential family in which the natural parameter η and the natural statistic T(x) are both the identity. A distribution in an exponential family with parameter θ can be written with probability density function (PDF) where and are known functions. A distribution in a natural exponential family with parameter θ can thus be written with PDF [Note that slightly different notation is used by the originator of the NEF, Carl Morris. Morris uses ω instead of η and ψ instead of A.] Suppose that , then a natural exponential family of order p has density or mass function of the form: where in this case the parameter A member of a natural exponential family has moment generating function (MGF) of the form The cumulant generating function is by definition the logarithm of the MGF, so it is The five most important univariate cases are: normal distribution with known variance Poisson distribution gamma distribution with known shape parameter α (or k depending on notation set used) binomial distribution with known number of trials, n negative binomial distribution with known These five examples – Poisson, binomial, negative binomial, normal, and gamma – are a special subset of NEF, called NEF with quadratic variance function (NEF-QVF) because the variance can be written as a quadratic function of the mean. NEF-QVF are discussed below. Distributions such as the exponential, Bernoulli, and geometric distributions are special cases of the above five distributions. For example, the Bernoulli distribution is a binomial distribution with n = 1 trial, the exponential distribution is a gamma distribution with shape parameter α = 1 (or k = 1 ), and the geometric distribution is a special case of the negative binomial distribution. Some exponential family distributions are not NEF.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.