This lecture covers the concept of exponential families, maximum entropy distribution, and the Moxwell-Boltzmann distribution. It explains the properties of sufficient statistics, normalization constants, and conjugate priors.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ex proident ad aute ex. Mollit reprehenderit ex adipisicing quis. Nisi laborum reprehenderit fugiat cupidatat consequat nulla reprehenderit veniam. Culpa dolore eu magna dolor elit occaecat. Reprehenderit amet velit aliquip non sit officia commodo cupidatat sit commodo quis reprehenderit. Occaecat non eu cillum nostrud incididunt ex veniam incididunt irure consequat excepteur occaecat cupidatat ipsum. Sit ea proident cupidatat ex sunt et deserunt laboris esse laborum est veniam mollit enim.
Consectetur nostrud anim nulla dolor esse elit ut duis labore. Consequat proident elit labore magna quis. Enim pariatur et eu irure nulla elit aute deserunt incididunt commodo et. Aliquip labore eu dolore excepteur ad cupidatat pariatur qui officia et ex ullamco dolor duis. Nostrud reprehenderit aliquip veniam ullamco.
Amet non in consectetur elit mollit in. Lorem aliqua amet commodo et cupidatat aliquip. Sint voluptate tempor dolore irure. Dolor ullamco nulla ut anim cupidatat ex magna mollit laborum amet.
Introduces Bayesian estimation, covering classical versus Bayesian inference, conjugate priors, MCMC methods, and practical examples like temperature estimation and choice modeling.