**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Mathematical modelling of infectious diseases

Summary

Mathematical models can project how infectious diseases progress to show the likely outcome of an epidemic (including in plants) and help inform public health and plant health interventions. Models use basic assumptions or collected statistics along with mathematics to find parameters for various infectious diseases and use those parameters to calculate the effects of different interventions, like mass vaccination programs. The modelling can help decide which intervention(s) to avoid and which to trial, or can predict future growth patterns, etc.
The modelling of infectious diseases is a tool that has been used to study the mechanisms by which diseases spread, to predict the future course of an outbreak and to evaluate strategies to control an epidemic.
The first scientist who systematically tried to quantify causes of death was John Graunt in his book Natural and Political Observations made upon the Bills of Mortality, in 1662. The bills he studied were listings of numbers and causes of deaths published weekly. Graunt's analysis of causes of death is considered the beginning of the "theory of competing risks" which according to Daley and Gani is "a theory that is now well established among modern epidemiologists".
The earliest account of mathematical modelling of spread of disease was carried out in 1760 by Daniel Bernoulli. Trained as a physician, Bernoulli created a mathematical model to defend the practice of inoculating against smallpox. The calculations from this model showed that universal inoculation against smallpox would increase the life expectancy from 26 years 7 months to 29 years 9 months. Daniel Bernoulli's work preceded the modern understanding of germ theory.
In the early 20th century, William Hamer and Ronald Ross applied the law of mass action to explain epidemic behaviour.
The 1920s saw the emergence of compartmental models. The Kermack–McKendrick epidemic model (1927) and the Reed–Frost epidemic model (1928) both describe the relationship between susceptible, infected and immune individuals in a population.

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (15)

Compartmental models in epidemiology

Compartmental models are a very general modelling technique. They are often applied to the mathematical modelling of infectious diseases. The population is assigned to compartments with labels – for example, S, I, or R, (Susceptible, Infectious, or Recovered). People may progress between compartments. The order of the labels usually shows the flow patterns between the compartments; for example SEIS means susceptible, exposed, infectious, then susceptible again.

Transmission risks and rates

Transmission of an infection requires three conditions: an infectious individual a susceptible individual an effective contact between them An effective contact is defined as any kind of contact between two individuals such that, if one individual is infectious and the other susceptible, then the first individual infects the second. Whether or not a particular kind of contact will be effective depends on the infectious agent and its route of transmission.

Mathematical modelling of infectious diseases

Mathematical models can project how infectious diseases progress to show the likely outcome of an epidemic (including in plants) and help inform public health and plant health interventions. Models use basic assumptions or collected statistics along with mathematics to find parameters for various infectious diseases and use those parameters to calculate the effects of different interventions, like mass vaccination programs. The modelling can help decide which intervention(s) to avoid and which to trial, or can predict future growth patterns, etc.

Related courses (3)

MATH-560: Stochastic epidemic models

This course is an introduction to some classical models of epidemics involving random mechanisms.

BIO-512: Digital epidemiology

Epidemiology is a cornerstone of public health. Understanding the distribution and dynamics of diseases is critically important to manage or prevent them. Modern digital approaches are used increasing

PHYS-460: Nonlinear dynamics, chaos and complex systems

The course provides students with the tools to approach the study of nonlinear systems and chaotic dynamics. Emphasis is given to concrete examples and numerical applications are carried out during th

Related lectures (163)

Transcritical Bifurcation: SIS Epidemics

Explores transcritical bifurcation in SIS epidemics, analyzing mathematical equations and system dynamics.

Transcritical Bifurcation in Dynamical Systems

Explores transcritical bifurcation in dynamical systems, with a focus on SIS epidemics and their mathematical analysis.

Epidemic Spreading Models

Covers classical models of epidemic spreading and dynamics on networks with examples.