Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
An extremophile (from Latin extremus meaning "extreme" and Greek philiā (φιλία) meaning "love") is an organism that is able to live (or in some cases thrive) in extreme environments, i.e. environments with conditions approaching or expanding the limits of what known life can adapt to, such as extreme temperature, radiation, salinity, or pH level. Since the definition of an extreme environment is relative to an arbitrarily defined standard, often an anthropocentric one, these organisms can be considered ecologically dominant in the evolutionary history of the planet. Some spores and cocooned bacteria samples have been dormant for more than 40 million years, extremophiles have continued to thrive in the most extreme conditions, making them one of the most abundant lifeforms. The study of extremophiles has expanded human knowledge of the limits of life, and informs speculation about extraterrestrial life. Extremophiles are also of interest because of their potential for bioremediation of environments made hazardous to humans due to pollution or contamination. In the 1980s and 1990s, biologists found that microbial life has great flexibility for surviving in extreme environments—niches that are acidic, extraordinarily hot or within irregular air pressure for example—that would be completely inhospitable to complex organisms. Some scientists even concluded that life may have begun on Earth in hydrothermal vents far under the ocean's surface. According to astrophysicist Steinn Sigurdsson, "There are viable bacterial spores that have been found that are 40 million years old on Earth—and we know they're very hardened to radiation." Some bacteria were found living in the cold and dark in a lake buried a half-mile deep under the ice in Antarctica, and in the Marianas Trench, the deepest place in Earth's oceans. Expeditions of the International Ocean Discovery Program found microorganisms in sediment that is below seafloor in the Nankai Trough subduction zone.
Dusan Licina, Shen Yang, Marouane Merizak, Akila Muthalagu
, , , , , , , ,