Nilpotent matrixIn linear algebra, a nilpotent matrix is a square matrix N such that for some positive integer . The smallest such is called the index of , sometimes the degree of . More generally, a nilpotent transformation is a linear transformation of a vector space such that for some positive integer (and thus, for all ). Both of these concepts are special cases of a more general concept of nilpotence that applies to elements of rings. The matrix is nilpotent with index 2, since .
Matrix (mathematics)In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Representation theoryRepresentation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
Companion matrixIn linear algebra, the Frobenius companion matrix of the monic polynomial is the square matrix defined as Some authors use the transpose of this matrix, , which is more convenient for some purposes such as linear recurrence relations (see below). is defined from the coefficients of , while the characteristic polynomial as well as the minimal polynomial of are equal to . In this sense, the matrix and the polynomial are "companions". Any matrix A with entries in a field F has characteristic polynomial , which in turn has companion matrix .
Generalized eigenvectorIn linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. Let be an -dimensional vector space and let be the matrix representation of a linear map from to with respect to some ordered basis. There may not always exist a full set of linearly independent eigenvectors of that form a complete basis for . That is, the matrix may not be diagonalizable.
Diagonalizable matrixIn linear algebra, a square matrix is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix and a diagonal matrix such that , or equivalently . (Such , are not unique.) For a finite-dimensional vector space , a linear map is called diagonalizable if there exists an ordered basis of consisting of eigenvectors of .