Concept

Dropsonde

Summary
A dropsonde is an expendable weather reconnaissance device created by the National Center for Atmospheric Research (NCAR), designed to be dropped from an aircraft at altitude over water to measure (and therefore track) storm conditions as the device falls to the surface. The sonde contains a GPS receiver, along with pressure, temperature, and humidity (PTH) sensors to capture atmospheric profiles and thermodynamic data. It typically relays this data to a computer in the aircraft by radio transmission. Dropsonde instruments are typically the only current method to measure the winds and barometric pressure through the atmosphere and down to the sea surface within the core of tropical cyclones far from land-based weather radar. The data obtained is usually fed via radio into supercomputers for numerical weather prediction, enabling forecasters to better predict the effects and intensity, based on computer-generated models using data gathered from previous storms under similar conditions. This helps meteorologists to more reliably establish a storm's potential damage, based on those factors. Since the early 1970s, United States Air Force Reserves Hurricane Hunters of the 53rd Weather Reconnaissance Squadron based at Keesler Air Force Base in Biloxi, Mississippi, have employed dropsondes while flying over the ocean to obtain meteorological data on the structure of hurricanes deemed to be of possible concern to coastal and inland locations in the northern Atlantic ocean, northeastern Pacific ocean, and the Gulf of Mexico. During a typical hurricane season, Hurricane Hunters deploys 1000 to 1500 sondes on training and storm missions. Aircraft reconnaissance missions are also sometimes requested to investigate the broader atmospheric structure over the ocean when cyclones may pose a significant threat to the United States. These interests include not only potential hurricanes, but also possible snow events (like nor'easters) or significant tornado outbreaks. The dropsondes are used to supplement the large gaps over oceans within the global network of daily radiosonde launches.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.