Concept

Automated trading system

An automated trading system (ATS), a subset of algorithmic trading, uses a computer program to create buy and sell orders and automatically submits the orders to a market center or exchange. The computer program will automatically generate orders based on predefined set of rules using a trading strategy which is based on technical analysis, advanced statistical and mathematical computations or input from other electronic sources. These automated trading systems are mostly employed by investment banks or hedge funds, but are also available to private investors using simple online tools. Automated trading systems are often used with electronic trading in automated market centers, including electronic communication networks, "dark pools", and automated exchanges. Automated trading systems and electronic trading platforms can execute repetitive tasks at speeds orders of magnitude greater than any human equivalent. Traditional risk controls and safeguards that relied on human judgment are not appropriate for automated trading and this has caused issues such as the 2010 Flash Crash. New controls such as trading curbs or 'circuit breakers' have been put in place in some electronic markets to deal with automated trading systems. The automated trading system determines whether an order should be submitted based on, for example, the current market price of an option and theoretical buy and sell prices. The theoretical buy and sell prices are derived from, among other things, the current market price of the security underlying the option. A look-up table stores a range of theoretical buy and sell prices for a given range of current market price of the underlying security. Accordingly, as the price of the underlying security changes, a new theoretical price may be indexed in the look-up table, thereby avoiding calculations that would otherwise slow automated trading decisions. A distributed processing on-line automated trading system uses structured messages to represent each stage in the negotiation between a market maker (quoter) and a potential buyer or seller (requestor).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (10)
FIN-525: Financial big data
The course introduces modern methods to acquire, clean, and analyze large quantities of financial data efficiently. The second part expands on how to apply these techniques and robust statistics to fi
FIN-413: Financial applications of blockchains and distributed ledgers
This course provides an introduction to Distributed Ledger Technology (DLT), blockchains and cryptocurrencies, and their applications in finance and banking and draws the analogies between Traditional
FIN-405: Investments
The course covers a wide range of topics in investment analysis
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.