An isosurface is a three-dimensional analog of an isoline. It is a surface that represents points of a constant value (e.g. pressure, temperature, velocity, density) within a volume of space; in other words, it is a level set of a continuous function whose domain is 3-space. The term isoline is also sometimes used for domains of more than 3 dimensions. Isosurfaces are normally displayed using computer graphics, and are used as data visualization methods in computational fluid dynamics (CFD), allowing engineers to study features of a fluid flow (gas or liquid) around objects, such as aircraft wings. An isosurface may represent an individual shock wave in supersonic flight, or several isosurfaces may be generated showing a sequence of pressure values in the air flowing around a wing. Isosurfaces tend to be a popular form of visualization for volume datasets since they can be rendered by a simple polygonal model, which can be drawn on the screen very quickly. In medical imaging, isosurfaces may be used to represent regions of a particular density in a three-dimensional CT scan, allowing the visualization of internal organs, bones, or other structures. Numerous other disciplines that are interested in three-dimensional data often use isosurfaces to obtain information about pharmacology, chemistry, geophysics and meteorology. The marching cubes algorithm was first published in the 1987 SIGGRAPH proceedings by Lorensen and Cline, and it creates a surface by intersecting the edges of a data volume grid with the volume contour. Where the surface intersects the edge the algorithm creates a vertex. By using a table of different triangles depending on different patterns of edge intersections the algorithm can create a surface. This algorithm has solutions for implementation both on the CPU and on the GPU. The asymptotic decider algorithm was developed as an extension to marching cubes in order to resolve the possibility of ambiguity in it.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Modeling Class: Vesta Software Visualization
Explores crystal structure visualization using Vesta software for CCP and HCP arrangements.
Related publications (9)

Deep Learning for 3D Surface Modelling and Reconstruction

Benoît Alain René Guillard

In recent years, there has been a significant revolution in the field of deep learning, which has demonstrated its effectiveness in automatically capturing intricate patterns from large datasets. However, the majority of these successes in Computer Vision ...
EPFL2023

MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field Networks

Pascal Fua, Benoît Alain René Guillard, Federico Stella

Unsigned Distance Fields (UDFs) can be used to represent non-watertight surfaces. However, current approaches to converting them into explicit meshes tend to either be expensive or to degrade the accuracy. Here, we extend the marching cube algorithm to han ...
2022

The CT-cube: A framework for the design and the assessment of computational thinking activities

Francesco Mondada, Alberto Piatti, Laila Abdelsalam El-Hamamsy

Computational thinking is a fundamental competence that is being introduced in K-12 and succeeding curricula worldwide. Despite this huge effort, many computational thinking models in the literature do not explicitly take into consideration the pupils’ age ...
2022
Show more
Related concepts (8)
Marching cubes
Marching cubes is a computer graphics algorithm, published in the 1987 SIGGRAPH proceedings by Lorensen and Cline, for extracting a polygonal mesh of an isosurface from a three-dimensional discrete scalar field (the elements of which are sometimes called voxels). The applications of this algorithm are mainly concerned with medical visualizations such as CT and MRI scan data images, and special effects or 3-D modelling with what is usually called metaballs or other metasurfaces.
Computer graphics
Computer graphics deals with generating s and art with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing.
Implicit surface
In mathematics, an implicit surface is a surface in Euclidean space defined by an equation An implicit surface is the set of zeros of a function of three variables. Implicit means that the equation is not solved for x or y or z. The graph of a function is usually described by an equation and is called an explicit representation. The third essential description of a surface is the parametric one: where the x-, y- and z-coordinates of surface points are represented by three functions depending on common parameters .
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.