Nuclear technology is technology that involves the nuclear reactions of atomic nuclei. Among the notable nuclear technologies are nuclear reactors, nuclear medicine and nuclear weapons. It is also used, among other things, in smoke detectors and gun sights.
Nuclear physics
The vast majority of common, natural phenomena on Earth only involve gravity and electromagnetism, and not nuclear reactions. This is because atomic nuclei are generally kept apart because they contain positive electrical charges and therefore repel each other.
In 1896, Henri Becquerel was investigating phosphorescence in uranium salts when he discovered a new phenomenon which came to be called radioactivity. He, Pierre Curie and Marie Curie began investigating the phenomenon. In the process, they isolated the element radium, which is highly radioactive. They discovered that radioactive materials produce intense, penetrating rays of three distinct sorts, which they labeled alpha, beta, and gamma after the first three Greek letters. Some of these kinds of radiation could pass through ordinary matter, and all of them could be harmful in large amounts. All of the early researchers received various radiation burns, much like sunburn, and thought little of it.
The new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine (as had the discoveries of electricity and magnetism, earlier), and a number of patent medicines and treatments involving radioactivity were put forward.
Gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long-term hazard. Many of the scientists working on radioactivity died of cancer as a result of their exposure. Radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters.
As the atom came to be better understood, the nature of radioactivity became clearer.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The elective project is designed to train the students in the solution of specific engineering problems related to nuclear technology. This makes use of the technical and social skills acquired during
This is an introductory course in radiation physics that aims at providing students with a foundation in radiation protection and with information about the main applications of radioactive sources/su
The reactor experiments course aims to introduce the students to radiation detection techniques and nuclear reactor experiments. The core of the course is the unique opportunity to conduct reactor exp
The anti-nuclear movement is a social movement that opposes various nuclear technologies. Some direct action groups, environmental movements, and professional organisations have identified themselves with the movement at the local, national, or international level. Major anti-nuclear groups include Campaign for Nuclear Disarmament, Friends of the Earth, Greenpeace, International Physicians for the Prevention of Nuclear War, Peace Action, Seneca Women's Encampment for a Future of Peace and Justice and the Nuclear Information and Resource Service.
On 6 and 9 August 1945, the United States detonated two atomic bombs over the Japanese cities of Hiroshima and Nagasaki. The bombings killed between 129,000 and 226,000 people, most of whom were civilians, and remain the only use of nuclear weapons in an armed conflict. Japan surrendered to the Allies on 15 August, six days after the bombing of Nagasaki and the Soviet Union's declaration of war against Japan and invasion of Japanese-occupied Manchuria. The Japanese government signed the instrument of surrender on 2 September, effectively ending the war.
The nuclear power debate is a long-running controversy about the risks and benefits of using nuclear reactors to generate electricity for civilian purposes. The debate about nuclear power peaked during the 1970s and 1980s, as more and more reactors were built and came online, and "reached an intensity unprecedented in the history of technology controversies" in some countries. In the 2010s, with growing public awareness about climate change and the critical role that carbon dioxide and methane emissions plays in causing the heating of the earth's atmosphere, there was a resurgence in the intensity of the nuclear power debate.
In the last two decades, the use of OpenFOAM as a multi-physics library for nuclear applications has grown from a sporadic use for exploratory studies to a widespread application for the analysis of innovative reactor concepts and highly complex problems. ...
Nuclear power is a powerful technology that plays an important role in the fight against climate change, and research is continuously engaged in studies that could further improve its safety. After the Fukushima accident, Accident Tolerant Fuels research h ...
The neutron time-of-flight (n_TOF) facility at the European Laboratory for Particle Physics (CERN) is a pulsed white-spectrum neutron spallation source producing neutrons for two experimental areas: the Experimental Area 1 (EAR1), located 185 m horizontall ...