Concept

Global atmospheric electrical circuit

Summary
A global atmospheric electrical circuit is the continuous movement of atmospheric charge carriers, such as ions, between an upper conductive layer (often an ionosphere) and surface. The global circuit concept is closely related to atmospheric electricity, but not all atmospheres necessarily have a global electric circuit. The basic concept of a global circuit is that through the balance of thunderstorms and fair weather, the atmosphere is subject to a continual and substantial electrical current. Principally, thunderstorms throughout the world carry negative charges to the earth, which is then discharged gradually through the air away from the storms, in conditions that are referred to as "fair weather". This atmospheric circuit is central to the study of atmospheric physics and meteorology. The global electrical circuit is also relevant to the study of human health and air pollution, due to the interaction of ions and aerosols. The effects of climate change and temperature-sensitivity of the Earth's electrical circuit are currently unknown. The history of the global atmospheric electrical circuit is intertwined with the history of atmospheric electricity. For example, in the 18th century, scientists began understanding the link between lightning and electricity. In addition to the iconic kite experiments of Benjamin Franklin and Thomas-François Dalibard, some early studies of charge in a "cloudless atmosphere" (i.e. fair weather) were carried out by Giambatista Beccaria, John Canton, Louis-Guillaume Le Monnier and John Read. Fair weather measurements from the late 18th century onwards often found consistent diurnal variations. During the 19th century, several long series of observations were made. Measurements near cities were (and still are) heavily influenced by smoke pollution. In the early 20th century, balloon ascents provided information about the electric field well above the surface. Important work was done by the research vessel Carnegie, which produced standardised measurements around the world's oceans (where the air is relatively clean).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.