**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Tomas Rubin

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Courses taught by this person

No results

Related publications (4)

Loading

Loading

Loading

People doing similar research (93)

Related research domains (10)

Time series

In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. T

Curve

In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by

Estimator

In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (th

Related units (4)

A functional (lagged) time series regression model involves the regression of scalar response time series on a time series of regressors that consists of a sequence of random functions. In practice, the underlying regressor curve time series are not always directly accessible, but are latent processes observed (sampled) only at discrete measurement locations. In this article, we consider the so-called sparse observation scenario where only a relatively small number of measurement locations have been observed, possibly different for each curve. The measurements can be further contaminated by additive measurement error. A spectral approach to the estimation of the model dynamics is considered. The spectral density of the regressor time series and the cross-spectral density between the regressors and response time series are estimated by kernel smoothing methods from the sparse observations. The impulse response regression coefficients of the lagged regression model are then estimated by means of ridge regression (Tikhonov regularization) or principal component analysis (PCA) regression (spectral truncation). The latent functional time series are then recovered by means of prediction, conditioning on all the observed data. The performance and implementation of our methods are illustrated by means of a simulation study and the analysis of meteorological data.

Tomas Masák, Victor Panaretos, Tomas Rubin

Nonparametric inference for functional data over two-dimensional domains entails additional computational and statistical challenges, compared to the one-dimensional case. Separability of the covariance is commonly assumed to address these issues in the densely observed regime. Instead, we consider the sparse regime, where the latent surfaces are observed only at few irregular locations with additive measurement error, and propose an estimator of covariance based on local linear smoothers. Consequently, the assumption of separability reduces the intrinsically four-dimensional smoothing problem into several two-dimensional smoothers and allows the proposed estimator to retain the classical minimax-optimal convergence rate for two-dimensional smoothers. Even when separability fails to hold, imposing it can be still advantageous as a form of regularization. A simulation study reveals a favorable bias-variance tradeoff and massive speed-ups achieved by our approach. Finally, the proposed methodology is used for qualitative analysis of implied volatility surfaces corresponding to call options, and for prediction of the latent surfaces based on information from the entire dataset, allowing for uncertainty quantification. Our cross-validated out-of-sample quantitative results show that the proposed methodology outperforms the common approach of pre-smoothing every implied volatility surface separately. Supplementary materials for this article are available online.

Functional time series is a temporally ordered sequence of not necessarily independent random curves. While the statistical analysis of such data has been traditionally carried out under the assumption of completely observed functional data, it may well happen that the statistician only has access to a relatively low number of sparse measurements for each random curve. These discrete measurements may be moreover irregularly scattered in each curve's domain, missing altogether for some curves, and be contaminated by measurement noise. This sparse sampling protocol escapes from the reach of established estimators in functional time series analysis and therefore requires development of a novel methodology.
The core objective of this thesis is development of a non-parametric statistical toolbox for analysis of sparsely observed functional time series data. Assuming smoothness of the latent curves, we construct a local-polynomial-smoother based estimator of the spectral density operator producing a consistent estimator of the complete second order structure of the data. Moreover, the spectral domain recovery approach allows for prediction of latent curve data at a given time by borrowing strength from the estimated dynamic correlations in the entire time series across time. Further to predicting the latent curves from their noisy point samples, the method fills in gaps in the sequence (curves nowhere sampled), denoises the data, and serves as a basis for forecasting.
A classical non-parametric apparatus for encoding the dependence between a pair of or among a multiple functional time series, whether sparsely or fully observed, is the functional lagged regression model. This consists of a linear filter between the regressors time series and the response. We show how to tailor the smoother based estimators for the estimation of the cross-spectral density operators and the cross-covariance operators and, by means of spectral truncation and Tikhonov regularisation techniques, how to estimate the lagged regression filter and predict the response process.
The simulation studies revealed the following findings: (i) if one has freedom to design a sampling scheme with a fixed number of measurements, it is advantageous to sparsely distribute these measurements in a longer time horizon rather than concentrating over a shorter time horizon to achieve dense measurements in order to diminish the spectral density estimation error, (ii) the developed functional recovery predictor surpasses the static predictor not exploiting the temporal dependence, (iii) neither of the two considered regularisation techniques can, in general, dominate the other for the estimation in functional lagged regression models. The new methodologies are illustrated by applications to real data: the meteorological data revolving around the fair-weather atmospheric electricity measured in Tashkent, Uzbekistan, and at Wank mountain, Germany; and a case study analysing the dependence of the US Treasury yield curve on macroeconomic variables.
As a secondary contribution, we present a novel simulation method for general stationary functional time series defined through their spectral properties. A simulation study shows universality of such approach and superiority of the spectral domain simulation over the temporal domain in some situations.