Concept

Harold Davenport

Summary
Harold Davenport FRS (30 October 1907 – 9 June 1969) was an English mathematician, known for his extensive work in number theory. Born on 30 October 1907 in Huncoat, Lancashire, Davenport was educated at Accrington Grammar School, the University of Manchester (graduating in 1927), and Trinity College, Cambridge. He became a research student of John Edensor Littlewood, working on the question of the distribution of quadratic residues. The attack on the distribution question leads quickly to problems that are now seen to be special cases of those on local zeta-functions, for the particular case of some special hyperelliptic curves such as . Bounds for the zeroes of the local zeta-function immediately imply bounds for sums , where χ is the Legendre symbol modulo a prime number p, and the sum is taken over a complete set of residues mod p. In the light of this connection it was appropriate that, with a Trinity research fellowship, Davenport in 1932–1933 spent time in Marburg and Göttingen working with Helmut Hasse, an expert on the algebraic theory. This produced the work on the Hasse–Davenport relations for Gauss sums, and contact with Hans Heilbronn, with whom Davenport would later collaborate. In fact, as Davenport later admitted, his inherent prejudices against algebraic methods ("what can you do with algebra?") probably limited the amount he learned, in particular in the "new" algebraic geometry and Artin/Noether approach to abstract algebra. He took an appointment at the University of Manchester in 1937, just at the time when Louis Mordell had recruited émigrés from continental Europe to build an outstanding department. He moved into the areas of diophantine approximation and geometry of numbers. These were fashionable, and complemented the technical expertise he had in the Hardy-Littlewood circle method; he was later, though, to let drop the comment that he wished he'd spent more time on the Riemann hypothesis. He was President of the London Mathematical Society from 1957 to 1959.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.