An Earth mass (denoted as or , where ⊕ is the standard astronomical symbol for Earth), is a unit of mass equal to the mass of the planet Earth. The current best estimate for the mass of Earth is , with a relative uncertainty of 10−4. It is equivalent to an average density of 5,515kg/m3. Using the nearest metric prefix, the Earth mass is approximately six ronnagrams, or 6.0 Rg. The Earth mass is a standard unit of mass in astronomy that is used to indicate the masses of other planets, including rocky terrestrial planets and exoplanets. One Solar mass is close to 333,000 Earth masses. The Earth mass excludes the mass of the Moon. The mass of the Moon is about 1.2% of that of the Earth, so that the mass of the Earth+Moon system is close to 6.0456e24kg. Most of the mass is accounted for by iron and oxygen (c. 32% each), magnesium and silicon (c. 15% each), calcium, aluminium and nickel (c. 1.5% each). Precise measurement of the Earth mass is difficult, as it is equivalent to measuring the gravitational constant, which is the fundamental physical constant known with least accuracy, due to the relative weakness of the gravitational force. The mass of the Earth was first measured with any accuracy (within about 20% of the correct value) in the Schiehallion experiment in the 1770s, and within 1% of the modern value in the Cavendish experiment of 1798. The mass of Earth is estimated to be: which can be expressed in terms of solar mass as: The ratio of Earth mass to lunar mass has been measured to great accuracy. The current best estimate is: The G product for the Earth is called the geocentric gravitational constant and equals 398600441.8e6 m3 s−2. It is determined using laser ranging data from Earth-orbiting satellites, such as LAGEOS-1. The G product can also be calculated by observing the motion of the Moon or the period of a pendulum at various elevations. These methods are less precise than observations of artificial satellites. The relative uncertainty of the geocentric gravitational constant is just 2e-9, i.e.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.