Scoring algorithm, also known as Fisher's scoring, is a form of Newton's method used in statistics to solve maximum likelihood equations numerically, named after Ronald Fisher. Let be random variables, independent and identically distributed with twice differentiable p.d.f. , and we wish to calculate the maximum likelihood estimator (M.L.E.) of . First, suppose we have a starting point for our algorithm , and consider a Taylor expansion of the score function, , about : where is the observed information matrix at . Now, setting , using that and rearranging gives us: We therefore use the algorithm and under certain regularity conditions, it can be shown that . In practice, is usually replaced by , the Fisher information, thus giving us the Fisher Scoring Algorithm: Under some regularity conditions, if is a consistent estimator, then (the correction after a single step) is 'optimal' in the sense that its error distribution is asymptotically identical to that of the true max-likelihood estimate.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.