In computer science, counting sort is an algorithm for sorting a collection of objects according to keys that are small positive integers; that is, it is an integer sorting algorithm. It operates by counting the number of objects that possess distinct key values, and applying prefix sum on those counts to determine the positions of each key value in the output sequence. Its running time is linear in the number of items and the difference between the maximum key value and the minimum key value, so it is only suitable for direct use in situations where the variation in keys is not significantly greater than the number of items. It is often used as a subroutine in radix sort, another sorting algorithm, which can handle larger keys more efficiently. Counting sort is not a comparison sort; it uses key values as indexes into an array and the Ω(n log n) lower bound for comparison sorting will not apply. Bucket sort may be used in lieu of counting sort, and entails a similar time analysis. However, compared to counting sort, bucket sort requires linked lists, dynamic arrays, or a large amount of pre-allocated memory to hold the sets of items within each bucket, whereas counting sort stores a single number (the count of items) per bucket. In the most general case, the input to counting sort consists of a collection of n items, each of which has a non-negative integer key whose maximum value is at most k. In some descriptions of counting sort, the input to be sorted is assumed to be more simply a sequence of integers itself, but this simplification does not accommodate many applications of counting sort. For instance, when used as a subroutine in radix sort, the keys for each call to counting sort are individual digits of larger item keys; it would not suffice to return only a sorted list of the key digits, separated from the items. In applications such as in radix sort, a bound on the maximum key value k will be known in advance, and can be assumed to be part of the input to the algorithm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.