CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
ENG-474: Impact studiesPrésentation des bases des études d'impact, du contexte et des outils d'évaluation de chacun des sujets et des chapitres. Illustration par de nombreux cas réels, et par un travail de groupe. Discussio
FIN-417: Quantitative risk managementThis course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
CS-486: Interaction designThis course focuses on goal-directed design and interaction design, two subjects treated in depth in the Cooper book (see reference below). To practice these two methods, we propose a design challenge
ME-372: Finite element methodL'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique
MATH-251(a): Numerical analysisThis course presents numerical methods for the solution of mathematical problems such as systems of linear and non-linear equations, functions approximation, integration and differentiation, and diffe
DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple