**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Course# CIVIL-515: Flood and dam break waves

Summary

Le cours offre des méthodes de calcul hydraulique pour des problèmes d'écoulements non permanents tels que les crues, les vagues, et les ruptures de barrage. L'accent est mis sur la compréhension physique des phénomènes, les équations de base (Saint-Venant), et les aspects relatifs à l'ingénierie.

Moodle Page

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Instructor

Related MOOCs (6)

Related concepts (92)

Related courses (13)

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

Christophe Ancey

Christophe Ancey has both a PhD and an engineering degree granted by the Ecole Centrale de Paris and the Grenoble National Polytechnic Institute. Trained as a hydraulics engineer, he did his doctoral work under the supervision of Pierre Evesque from 1994 to 1997 on rheology of granular flows in simple shearing. He was recruited in 1998 as a researcher in rheology at the Cemagref as part of the Erosion Protection team directed by Jean-Pierre Feuvrier, which has since become the laboratoire "Storm Erosion, Snow and Avalanche Laboratory". Parallel to this research activity, with Claude Charlier He set up a consulting firm for engineering contracting called Toraval (www.toraval.fr), which has become the major player in the avalanche field in France. Since 2004, He is a fluid-mechanics professor at EPFL and he is the director of the Environmental Hydraulics Laboratory.
He is associate editor of Water Resources Research, one of the leading journal in the field.

Wind wave

In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land. Wind waves on Earth range in size from small ripples to waves over high, being limited by wind speed, duration, fetch, and water depth.

Airy wave theory

In fluid dynamics, Airy wave theory (often referred to as linear wave theory) gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

Numerical methods for partial differential equations

Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.

Fluid mechanics

Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion.

Rogue wave

Rogue waves (also known as freak waves, monster waves, episodic waves, killer waves, extreme waves, and abnormal waves) are unusually large, unpredictable, and suddenly appearing surface waves that can be extremely dangerous to ships, even to large ones. They are distinct from tsunamis, which are often almost unnoticeable in deep waters and are caused by the displacement of water due to other phenomena (such as earthquakes). A rogue wave appearing at the shore is sometimes referred to as a sneaker wave.

Ce cours est une première introduction à la mécanique des fluides. On aborde tout d'abord les propriétés physiques des fluides et quelques principes fondamentaux de la physique, dont ceux de conservat

Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de

Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr

Ce cours présente une introduction aux méthodes d'approximation utilisées pour la simulation numérique en mécanique des fluides.
Les concepts fondamentaux sont présentés dans le cadre de la méthode d

The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.