ME-326: Control systems and discrete-time controlCe cours inclut la modélisation et l'analyse de systèmes dynamiques, l'introduction des principes de base et l'analyse de systèmes en rétroaction, la synthèse de régulateurs dans le domain fréquentiel
ME-422: Multivariable controlThis course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be placed on discrete
ME-321: Control systems + TPProvides the students with basic notions and tools for the analysis and control of dynamic systems. Shows them how to design controllers and analyze the performance of controlled systems.
ME-427: Networked control systemsThis course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
MATH-512: Optimization on manifoldsWe develop, analyze and implement numerical algorithms to solve optimization problems of the form min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Riemann
ME-323: Chemical process controlProvide the students with basic notions and tools for the modeling and analysis of dynamic systems. Show them how to design controllers and analyze the performance of controlled systems.
MATH-451: Numerical approximation of PDEsThe course is about the derivation, theoretical analysis and implementation of the finite element method for the numerical approximation of partial differential equations in one and two space dimens
MGT-418: Convex optimizationThis course introduces the theory and application of modern convex optimization from an engineering perspective.
ME-425: Model predictive controlProvide an introduction to the theory and practice of Model Predictive Control (MPC). Main benefits of MPC: flexible specification of time-domain objectives, performance optimization of highly complex