PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
CS-450: Algorithms IIA first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
MATH-432: Probability theoryThe course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
MGT-418: Convex optimizationThis course introduces the theory and application of modern convex optimization from an engineering perspective.
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
FIN-415: Probability and stochastic calculusThis course gives an introduction to probability theory and stochastic calculus in discrete and continuous time. The fundamental notions and techniques introduced in this course have many applicatio
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple