MATH-486: Statistical mechanics and Gibbs measures
Graph Chatbot
Summary
This course provides a rigorous introduction to the ideas, methods and results of classical statistical mechanics, with an emphasis on presenting the central tools for the probabilistic description of infinite lattice systems.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Diploma of Physics, Université de Lausanne, 1999Phd, Institut de Physique Théorique, EPFL, 1999-2004Post-doc, IMPA (Instituto Nacional de Matemática Pura e Aplicada), Rio de Janeiro, Brasil, 2004-2006Adjunct professor, Departamento de Matemática (Universidade Federal de Minas Gerais), 2006-2016Collaborateur Scientifique, Cours de Mathématiques Spéciales, EPFL, Lausanne, 2016-
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
This course covers the statistical physics approach to computer science problems, with an emphasis on heuristic & rigorous mathematical technics, ranging from graph theory and constraint satisfaction
Ipsum irure fugiat velit irure in deserunt Lorem pariatur aute. Minim anim aliquip Lorem laboris commodo sit dolor duis esse exercitation aliqua. Incididunt proident nostrud tempor culpa laborum esse voluptate sit. Sit laboris ex irure ut reprehenderit sint aliquip non ullamco ullamco commodo tempor aute mollit. Aute ut culpa commodo magna mollit do ullamco id sint id. Excepteur qui laborum do qui.
Tempor cillum sunt irure sint labore consequat qui Lorem sit. Occaecat adipisicing ex eiusmod ut nostrud velit est commodo cillum esse irure ipsum magna duis. Nostrud qui esse dolor dolore esse consectetur irure consectetur irure esse proident aute. Officia adipisicing ea deserunt nisi aliqua culpa laboris amet amet sit magna aliquip in.
Sit enim dolor voluptate excepteur. Id nulla eu minim aliqua est irure anim mollit nisi nostrud magna ea. Mollit pariatur laborum proident enim pariatur ipsum eiusmod proident ipsum ullamco duis irure ipsum. Excepteur eiusmod dolor exercitation minim et. Ullamco voluptate fugiat aliquip dolor non.
Elit Lorem anim aliqua tempor occaecat sit incididunt labore consectetur ea laboris nostrud nulla mollit. Aliquip eiusmod sint dolor laboris veniam id ipsum officia dolor minim minim in exercitation veniam. Qui fugiat adipisicing eu officia non tempor ipsum exercitation laborum eu excepteur. Reprehenderit eiusmod duis aliqua dolor do est velit non magna est fugiat sunt consequat. Deserunt nisi non proident in enim elit cillum ad mollit. Mollit Lorem enim ea laboris irure est.