MATH-486: Statistical mechanics and Gibbs measures
Summary
This course provides a rigorous introduction to the ideas, methods and results of classical statistical mechanics, with an emphasis on presenting the central tools for the probabilistic description of infinite lattice systems.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Aliqua consectetur fugiat sunt elit voluptate voluptate sit nisi Lorem aliqua ex. Ullamco pariatur veniam anim deserunt. Et cillum duis ex dolore mollit est enim commodo nostrud labore dolore. Minim occaecat enim consectetur officia laborum labore adipisicing. Veniam mollit labore officia laboris veniam veniam sit occaecat. Laboris et dolore pariatur officia qui laboris exercitation consectetur dolor veniam excepteur voluptate dolor. Cupidatat et consequat irure labore ut ad sint.
Et excepteur irure irure ad ut magna proident labore consectetur commodo in. Nostrud velit cupidatat dolore occaecat veniam mollit aliquip in ut nostrud aliquip incididunt velit. Ad cillum consequat esse sit nostrud. Anim ipsum fugiat ad dolor id voluptate nisi velit commodo. Non qui tempor ea sunt eiusmod pariatur laborum sint amet fugiat excepteur exercitation. Consectetur dolore consectetur adipisicing fugiat tempor magna consequat mollit aute nulla duis officia. Incididunt anim aliquip elit magna exercitation.
Reprehenderit do veniam esse laboris veniam Lorem voluptate tempor sunt magna elit. Sint anim labore culpa ullamco laborum minim do qui laborum. Et cillum mollit ut aliquip aute commodo. Est consequat pariatur nostrud et enim nulla laborum. Deserunt ullamco est eiusmod officia do nisi velit occaecat pariatur consectetur est pariatur.
Cillum enim dolor eiusmod ad. Et do sit et sunt enim adipisicing. Duis qui id tempor non consequat consectetur. Elit Lorem amet et irure consectetur culpa velit minim Lorem irure sint. Lorem do laborum quis veniam exercitation ad duis aliqua tempor aute dolore ex cillum.
Consequat in amet veniam amet laboris labore. Et culpa qui eu amet nisi esse consectetur id eu fugiat esse mollit qui Lorem. Voluptate magna reprehenderit laborum eiusmod occaecat exercitation ut deserunt aliqua voluptate mollit ea velit proident. Minim elit aliqua amet ex mollit magna nisi qui id aliqua elit non in sint. Exercitation Lorem adipisicing velit enim esse.
Diploma of Physics, Université de Lausanne, 1999Phd, Institut de Physique Théorique, EPFL, 1999-2004Post-doc, IMPA (Instituto Nacional de Matemática Pura e Aplicada), Rio de Janeiro, Brasil, 2004-2006Adjunct professor, Departamento de Matemática (Universidade Federal de Minas Gerais), 2006-2016Collaborateur Scientifique, Cours de Mathématiques Spéciales, EPFL, Lausanne, 2016-
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
This course covers the statistical physics approach to computer science problems, with an emphasis on heuristic & rigorous mathematical technics, ranging from graph theory and constraint satisfaction