MATH-341: Linear modelsRegression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
FIN-525: Financial big dataThe course introduces modern methods to acquire, clean, and analyze large quantities of financial data efficiently. The second part expands on how to apply these techniques and robust statistics to fi
MGT-418: Convex optimizationThis course introduces the theory and application of modern convex optimization from an engineering perspective.
MGT-416: Causal inferenceStudents will learn the core concepts and techniques of network analysis with emphasis on causal inference. Theory and
application will be balanced, with students working directly with network data th
EE-613: Machine Learning for EngineersThe objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice. Laboratories will be done i
ME-213: Programmation pour ingénieurMettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio