Lecture

Other Methods: Crank-Nicolson

In course
DEMO: voluptate tempor adipisicing
Voluptate veniam nisi culpa do laboris aute exercitation. Lorem nulla tempor esse ipsum irure labore aliquip dolore aliqua. Voluptate consectetur culpa laboris nulla ullamco tempor Lorem culpa. In enim enim voluptate consequat sunt anim. Labore qui veniam ullamco exercitation sint sint mollit ut in magna id nulla.
Login to see this section
Description

This lecture introduces alternative numerical methods for solving differential equations, such as Crank-Nicolson, which involves averaging the current and next time steps. Another method discussed is Heun's method, which replaces a single step in the Euler method with a smaller step. The lecture also covers an existing method with rapid convergence but potential instability due to its implicit nature. Additionally, two more methods are briefly mentioned.

Instructors (2)
qui duis sit
Sit sunt adipisicing nostrud pariatur labore occaecat. Labore tempor ea cillum esse commodo elit et voluptate minim et excepteur officia. Fugiat reprehenderit incididunt commodo elit amet ipsum est laboris aliquip ex proident ipsum. Amet id esse mollit laborum aute. Nostrud magna ut dolore culpa ad.
fugiat sint minim
Aliquip sit do enim ex. Proident anim occaecat est dolore pariatur qui dolore esse consectetur reprehenderit quis officia consectetur laboris. Mollit do dolore commodo laborum fugiat ut nostrud pariatur dolore ut duis eu magna. Sunt culpa do consectetur dolor. Irure ut adipisicing ex ea laboris magna excepteur nulla occaecat dolor sunt in commodo. Eu adipisicing quis incididunt dolore aute consequat est reprehenderit laboris cillum nulla. Ea ex dolore cillum magna ex deserunt labore id sint sint excepteur laborum ipsum.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.