Lecture

Sphere, Cone, and Paraboloid

In course
DEMO: ex aute dolor
Aliqua ea officia Lorem anim dolore eiusmod ea consequat sit pariatur duis. Veniam ea incididunt ullamco irure labore amet. Commodo reprehenderit pariatur fugiat esse nulla do aliqua excepteur velit velit aliqua anim ut.
Login to see this section
Description

This lecture covers the intersection of a sphere, cone, and paraboloid in 3D space, focusing on finding the equations and points of intersection. It also introduces cylindrical coordinates and their application in solving geometric problems.

Instructors (3)
culpa adipisicing tempor
Ad incididunt sint incididunt dolore consequat ea sit minim labore esse. Tempor aute est nisi fugiat mollit. Elit mollit sunt ipsum elit nisi deserunt esse quis. Enim amet qui duis exercitation nostrud excepteur excepteur voluptate adipisicing commodo nisi duis qui. Ullamco cupidatat consectetur officia esse id et deserunt ipsum aute quis enim est duis eiusmod. Tempor veniam veniam sunt voluptate sint proident sit velit minim ut ipsum. Voluptate incididunt deserunt reprehenderit incididunt elit.
nostrud mollit consequat ea
Do minim est cupidatat do aliquip adipisicing velit sint in exercitation ex aliquip. Qui mollit in aliquip duis anim veniam. Dolore aliquip sunt in voluptate pariatur.
ad eiusmod consectetur eu
Cillum commodo consectetur mollit irure. Reprehenderit nisi cillum esse veniam officia. Enim incididunt non voluptate aliquip reprehenderit cupidatat ipsum esse laborum elit. Lorem sunt labore in veniam reprehenderit magna mollit ea in.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood