Explores perception in deep learning for autonomous vehicles, covering image classification, optimization methods, and the role of representation in machine learning.
Covers the foundational concepts of deep learning and the Transformer architecture, focusing on neural networks, attention mechanisms, and their applications in sequence modeling tasks.
Explores model-based deep reinforcement learning, focusing on Monte Carlo Tree Search and its applications in game strategies and decision-making processes.
Covers the fundamentals of multilayer neural networks and deep learning, including back-propagation and network architectures like LeNet, AlexNet, and VGG-16.