Lecture

Gradient Descent: Optimization Techniques

In course
DEMO: tempor sint adipisicing
Incididunt mollit ad sit nostrud. Enim eu non do reprehenderit in ut dolore est pariatur. Esse enim ea ut aute mollit dolore nulla elit Lorem ex proident qui aliquip. Mollit deserunt reprehenderit aute minim irure ut. Sint ut voluptate deserunt nostrud est non quis eu enim minim. Velit ut cillum ullamco Lorem mollit. Ipsum amet non consequat in officia consequat commodo et minim anim tempor cillum laborum pariatur.
Login to see this section
Description

This lecture covers the optimization techniques related to gradient descent, including the method of gradient, conjugate gradient method, Richardson dynamic, and zig-zag method. It explains the process of finding the optimal solution by iteratively updating the parameters based on the gradient of the cost function.

Instructors (2)
elit elit aliqua occaecat
Dolor ex deserunt excepteur ad qui non id laboris Lorem nisi. Elit consequat consectetur elit elit amet tempor dolore eiusmod excepteur quis. Laborum anim ea ullamco occaecat sint adipisicing culpa aute nostrud exercitation consequat. Esse nulla elit deserunt laboris commodo exercitation do ullamco ullamco Lorem est. Sint ea est pariatur sit sint. In quis dolore aute voluptate commodo est do eu quis non proident. Incididunt fugiat adipisicing veniam veniam enim laboris.
labore do
Laboris anim dolore ullamco eu esse enim fugiat sit. Est aliqua est quis adipisicing non ipsum dolor veniam do sunt. Quis ex labore Lorem cupidatat consectetur pariatur sunt dolor elit magna elit. Aliqua officia ad labore id deserunt eiusmod cupidatat sunt cillum consequat enim culpa. Id occaecat cupidatat minim ex exercitation voluptate enim tempor dolor aliquip dolore.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (31)
Belief Propagation: Key Methods and Analysis
Covers Belief Propagation, a key method for both analysis and algorithm.
Material and Energy Balances
Explores material and energy balances in chemical engineering for process optimization and design.
Optimization Methods: Theory Discussion
Explores optimization methods, including unconstrained problems, linear programming, and heuristic approaches.
Newton's Method: Optimization & Indefiniteness
Covers Newton's Method for optimization and discusses the caveats of indefiniteness in optimization problems.
Optimization Problems: Algebra and Trinomial Equations
Explores optimization problems in algebra and trinomial equations, focusing on maximizing area with fixed perimeters.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.