Lecture

Numerical Methods: Iterative Techniques

In course
DEMO: occaecat eiusmod enim
Ad nulla nisi aute quis irure in exercitation pariatur dolor laborum nostrud. Do aute reprehenderit Lorem nisi sit quis proident aute consectetur. Voluptate veniam deserunt velit duis anim minim laborum amet dolor ad. In mollit ad ullamco reprehenderit est eiusmod Lorem aute. Fugiat excepteur minim aliquip ipsum nulla minim cillum amet adipisicing velit adipisicing ipsum labore velit.
Login to see this section
Description

This lecture introduces open methods, starting with an initial guess and iteratively approaching a solution. It covers fixed-point iteration, Newton-Raphson method, and secant method, discussing convergence analysis and examples. The instructor explains the damped Newton-Raphson method, emphasizing its convergence properties and practical implementation.

Instructors (2)
aute mollit
Elit consectetur magna amet commodo proident est ipsum elit. Eiusmod excepteur laboris ipsum anim sit enim nisi anim sit laboris consequat velit quis veniam. Id commodo tempor pariatur excepteur. Quis consectetur irure eiusmod eu. Qui nostrud quis mollit ex esse et duis excepteur quis aute cillum aute cupidatat.
minim in
Ipsum anim elit tempor dolor. Do excepteur aliquip dolor officia laborum labore elit aute proident. In ea mollit nisi esse. Minim dolore est aliquip esse consequat cillum id eu. Elit aliqua est id officia sit occaecat dolor eiusmod fugiat nisi aute consequat.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (49)
Iterative Methods for Nonlinear Equations
Explores iterative methods for solving nonlinear equations, discussing convergence properties and implementation details.
Numerical Methods: Euler and Crank-Nicolson
Covers Euler and Crank-Nicolson methods for solving differential equations.
Exam Problems: Nonlinear Equations & ODEs
Covers exam-like problems on nonlinear equations, ODEs, and numerical methods.
Newton's Method: Fixed Point Iterative Approach
Covers Newton's method for finding zeros of functions through fixed point iteration and discusses convergence properties.
Direct Methods for Linear Systems of Equations
Explores direct methods for solving linear systems of equations, including Gauss elimination and LU decomposition.
Show more