**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Flat Space-Time: Conditions and Theorems

Description

This lecture covers the necessary conditions and theorems to have flat space-time, including the conditions for the metric to be invariant under coordinate transformations. It also discusses the symmetry properties of the Riemann tensor and the construction of scalars from it.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In courses (2)

PHYS-427: Relativity and cosmology I

Introduce the students to general relativity and its classical tests.

PHYS-428: Relativity and cosmology II

This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major

Related lectures (35)

Special and General Relativity

Introduces special and general relativity, Einstein equations, and gravitational dynamics.

Scalar, Vector or Tensor? Gravity

Discusses defining tensors, space-time dimensionality, and challenges in formulating a relativistic theory of gravity.

Linear Momentum Conservation and Stress in Continuum

Explores the conservation of linear momentum and stress in a continuum, focusing on governing equations and constitutive laws.

Gravitational Field Equations

Covers the formulation of gravitational field equations and the motion of particles in gravitational fields.

Stress Components & Transformation of Tensors

Covers stress components, tensor transformation, and invariants in continuum mechanics.

Related concepts (156)

Scalar curvature

In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls.

Minkowski space

In mathematical physics, Minkowski space (or Minkowski spacetime) (mɪŋˈkɔːfski,_-ˈkɒf-) combines inertial space and time manifolds (x,y) with a non-inertial reference frame of space and time (x',t') into a four-dimensional model relating a position (inertial frame of reference) to the field (physics). A four-vector (x,y,z,t) consists of a coordinate axes such as a Euclidean space plus time. This may be used with the non-inertial frame to illustrate specifics of motion, but should not be confused with the spacetime model generally.

Tensor

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product.

Change of rings

In algebra, a change of rings is an operation of changing a coefficient ring to another. Given a ring homomorphism , there are three ways to change the coefficient ring of a module; namely, for a right R-module M and a right S-module N, one can form the induced module, formed by extension of scalars, the coinduced module, formed by co-extension of scalars, and formed by restriction of scalars. They are related as adjoint functors: and This is related to Shapiro's lemma.

Quaternion

In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space, or, equivalently, as the quotient of two vectors. Multiplication of quaternions is noncommutative. Quaternions are generally represented in the form where a, b, c, and d are real numbers; and 1, i, j, and k are the basis vectors or basis elements.