**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Regular Curves: Parametrization and Tangent Vectors

Description

This lecture covers the concept of regular curves, including examples such as segments and graphs of functions. It also delves into curvilinear integrals along regular curves, discussing properties like the triangular inequality and parameterization by arc length.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Instructors (2)

In course

Related lectures (1)

Related concepts (28)

MATH-201: Analysis III

Calcul différentiel et intégral: Eléments d'analyse vectorielle, intégration par partie, intégrale curviligne, intégrale de surface, théorèmes de Stokes, Green, Gauss, fonctions harmoniques;
Eléments

Geometrical Aspects of Differential Operators

Explores differential operators, regular curves, norms, and injective functions, addressing questions on curves' properties, norms, simplicity, and injectivity.

Tangent vector

In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in Rn. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of germs. Formally, a tangent vector at the point is a linear derivation of the algebra defined by the set of germs at .

Tangent space

In mathematics, the tangent space of a manifold is a generalization of to curves in two-dimensional space and to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on the manifold. In differential geometry, one can attach to every point of a differentiable manifold a tangent space—a real vector space that intuitively contains the possible directions in which one can tangentially pass through .

Tangent bundle

In differential geometry, the tangent bundle of a differentiable manifold is a manifold which assembles all the tangent vectors in . As a set, it is given by the disjoint union of the tangent spaces of . That is, where denotes the tangent space to at the point . So, an element of can be thought of as a pair , where is a point in and is a tangent vector to at . There is a natural projection defined by . This projection maps each element of the tangent space to the single point .

Surface integral

In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, one may integrate a scalar field (that is, a function of position which returns a scalar as a value) over the surface, or a vector field (that is, a function which returns a vector as value). If a region R is not flat, then it is called a surface as shown in the illustration.

Vector field

In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space . A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout three dimensional space, such as the wind, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.