**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Finite Element Method: Quadratic Elements

Description

This lecture covers the precision of a finite element model, higher order asymptotic estimates of the error, modal analysis of a bi-embedded bar, integration by parts, element connectivity, local and global numbering, and system of linear equations.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

Related concepts (34)

ME-372: Finite element method

L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique

Related lectures (47)

Linear equation

In mathematics, a linear equation is an equation that may be put in the form where are the variables (or unknowns), and are the coefficients, which are often real numbers. The coefficients may be considered as parameters of the equation, and may be arbitrary expressions, provided they do not contain any of the variables. To yield a meaningful equation, the coefficients are required to not all be zero. Alternatively, a linear equation can be obtained by equating to zero a linear polynomial over some field, from which the coefficients are taken.

Quadratic form

In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, is a quadratic form in the variables x and y. The coefficients usually belong to a fixed field K, such as the real or complex numbers, and one speaks of a quadratic form over K. If , and the quadratic form equals zero only when all variables are simultaneously zero, then it is a definite quadratic form; otherwise it is an isotropic quadratic form.

Extended precision

Extended precision refers to floating-point number formats that provide greater precision than the basic floating-point formats. Extended precision formats support a basic format by minimizing roundoff and overflow errors in intermediate values of expressions on the base format. In contrast to extended precision, arbitrary-precision arithmetic refers to implementations of much larger numeric types (with a storage count that usually is not a power of two) using special software (or, rarely, hardware).

Quadratic integer

In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form x2 + bx + c = 0 with b and c (usual) integers. When algebraic integers are considered, the usual integers are often called rational integers. Common examples of quadratic integers are the square roots of rational integers, such as , and the complex number i = , which generates the Gaussian integers.

Quadratic irrational number

In mathematics, a quadratic irrational number (also known as a quadratic irrational or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their least common denominator, a quadratic irrational is an irrational root of some quadratic equation with integer coefficients.

Finite Element Method: Higher Order ModelsME-372: Finite element method

Explores precision of higher order finite element models and applications of quadratic finite elements in elastodynamics.

Linear Algebra: Systems of Linear Equations

Introduces linear algebra concepts, focusing on solving systems of linear equations and their representations.

Harmonic Forms and Riemann SurfacesMATH-680: Monstrous moonshine

Explores harmonic forms on Riemann surfaces, covering uniqueness of solutions and the Riemann bilinear identity.

Harmonic Forms: Main TheoremMATH-410: Riemann surfaces

Explores harmonic forms on Riemann surfaces and the uniqueness of solutions to harmonic equations.

Approximation Landau: Ising ModelPHYS-316: Statistical physics II

Explores the Landau approximation applied to the Ising model in statistical physics.