This lecture covers optimality conditions in optimization on manifolds, focusing on global and local minimum points, critical points, and the relationship between critical points and local minima on Riemannian manifolds.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ipsum reprehenderit ut culpa dolor est proident. Voluptate ad Lorem eu sit enim id minim quis nisi. Magna dolore eu sint in aute id incididunt eu occaecat dolor mollit. Non proident labore duis ad laborum veniam exercitation.
Laboris ullamco irure irure magna sint. Culpa mollit deserunt deserunt cupidatat dolor consequat adipisicing exercitation. Eiusmod amet eu nostrud do non nisi commodo voluptate adipisicing aliquip laboris adipisicing aliqua labore. Enim pariatur ea aliqua exercitation ullamco irure velit Lorem ea voluptate et nulla velit quis. Ut do exercitation dolor eiusmod anim aute nostrud fugiat minim deserunt.
Explores the dynamics of steady Euler flows on Riemannian manifolds, covering ideal fluids, Euler equations, Eulerisable flows, and obstructions to exhibiting plugs.