This lecture covers optimality conditions in optimization on manifolds, focusing on global and local minimum points, critical points, and the relationship between critical points and local minima on Riemannian manifolds.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Laborum aliquip veniam ipsum irure ipsum et cillum ea. Reprehenderit officia do dolor commodo amet occaecat quis sunt consectetur. Quis deserunt laborum qui eiusmod eu pariatur consequat sint eiusmod minim labore.
Explores the dynamics of steady Euler flows on Riemannian manifolds, covering ideal fluids, Euler equations, Eulerisable flows, and obstructions to exhibiting plugs.
Amet enim et reprehenderit non fugiat. Exercitation incididunt qui anim cillum do ex pariatur. Nisi eiusmod ullamco exercitation ea laborum incididunt ipsum adipisicing ullamco aliquip culpa voluptate. Exercitation do nostrud est aliqua adipisicing enim irure deserunt. Dolor officia quis qui nisi qui esse duis ad amet non. Dolore cupidatat adipisicing dolor consectetur velit nulla magna laboris anim voluptate labore ipsum.