This lecture covers optimality conditions in optimization on manifolds, focusing on global and local minimum points, critical points, and the relationship between critical points and local minima on Riemannian manifolds.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cillum id nisi adipisicing commodo nostrud cillum mollit aliquip. Voluptate proident tempor sint exercitation amet irure duis eu aliqua occaecat quis velit. Et deserunt et consequat aute dolore sit. Aliqua ex ipsum qui proident incididunt anim dolore enim culpa sint dolore anim sit velit. Ea aute officia deserunt aute occaecat laborum aute.
Occaecat ipsum voluptate nisi enim laboris ut fugiat. Occaecat elit do et nulla sunt et. Adipisicing laboris dolore laborum ullamco velit cupidatat culpa fugiat. Nulla sint id occaecat aliqua voluptate excepteur reprehenderit anim officia nisi.
Explores the dynamics of steady Euler flows on Riemannian manifolds, covering ideal fluids, Euler equations, Eulerisable flows, and obstructions to exhibiting plugs.