**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Powder Characterization: Part 1

Description

This lecture covers the importance of powder characterization in ceramic materials, focusing on motivation, sampling, particle size and shape, and key characteristics like density, porosity, and chemical composition. It also discusses the impact of powder characteristics on the manufacturing process and final product properties.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructors (2)

Related concepts (73)

Related lectures (4)

MSE-214: Mise en oeuvre des matériaux I

Introduction aux relations mise en œuvre-structures-propriétés des polymères, céramiques et métaux, fournissant les bases nécessaires à la sélection de matériaux et procédés pour la fabrication de com

The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with flat polygonal faces), for which the surface area is the sum of the areas of its faces. Smooth surfaces, such as a sphere, are assigned surface area using their representation as parametric surfaces.

A point particle (ideal particle or point-like particle, often spelled pointlike particle) is an idealization of particles heavily used in physics. Its defining feature is that it lacks spatial extension; being dimensionless, it does not take up space. A point particle is an appropriate representation of any object whenever its size, shape, and structure are irrelevant in a given context. For example, from far enough away, any finite-size object will look and behave as a point-like object.

In experimental and applied particle physics, nuclear physics, and nuclear engineering, a particle detector, also known as a radiation detector, is a device used to detect, track, and/or identify ionizing particles, such as those produced by nuclear decay, cosmic radiation, or reactions in a particle accelerator. Detectors can measure the particle energy and other attributes such as momentum, spin, charge, particle type, in addition to merely registering the presence of the particle.

A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). The volume bounded by the surface created by this revolution is the solid of revolution. Examples of surfaces of revolution generated by a straight line are cylindrical and conical surfaces depending on whether or not the line is parallel to the axis.

Area is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat.

Boltzmann Machine

Introduces the Boltzmann Machine, covering expectation consistency, data clustering, and probability distribution functions.

Determinantal Point Processes and Extrapolation

Covers determinantal point processes, sine-process, and their extrapolation in different spaces.

Efficient Stochastic Numerical Methods

Explores efficient stochastic numerical methods for modeling and learning, covering topics like the Analytical Engine and kinase inhibitors.

Quantum Random Number Generation

Explores quantum random number generation, discussing the challenges and implementations of generating good randomness using quantum devices.