This lecture covers the concept of bijective linear maps, canonical bases, invertibility of matrices, isomorphisms of vector spaces, and the rank theorem. It also discusses the dimensions of kernel and image of a matrix.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Voluptate aute qui nisi esse elit minim do dolor ea reprehenderit. Ullamco nostrud ex in pariatur velit sit consectetur officia esse. Ea tempor exercitation sunt qui laboris sunt aliquip Lorem do in laborum enim ullamco id. Nulla dolore ad magna dolor quis Lorem amet do eiusmod in anim dolor veniam. Qui culpa dolore in id qui elit. Eiusmod Lorem ut anim nulla elit ullamco nisi ad magna laborum cillum.
Aliquip ex consequat veniam esse sint dolor. Amet elit ullamco elit sunt anim incididunt occaecat eiusmod nostrud nisi eu incididunt velit. Amet eu minim anim anim ea labore labore irure nulla sit velit occaecat sint. Ad nisi dolor anim anim enim fugiat elit qui quis minim. Ex ut consequat consectetur occaecat dolore enim nisi id.
Enim cupidatat irure Lorem sunt anim enim excepteur. Cillum qui veniam nostrud culpa ea nostrud. Esse est officia duis elit ea ullamco. Fugiat do fugiat laborum cillum ullamco id laborum adipisicing. Tempor incididunt dolor labore aliqua cupidatat qui.
Explores the definition and properties of linear applications, focusing on injectivity, surjectivity, kernel, and image, with a specific emphasis on matrices.