This lecture covers the concept of bijective linear maps, canonical bases, invertibility of matrices, isomorphisms of vector spaces, and the rank theorem. It also discusses the dimensions of kernel and image of a matrix.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Veniam ut amet id amet reprehenderit ex et elit consequat fugiat adipisicing elit velit mollit. Non tempor aliquip ut pariatur eiusmod qui anim veniam. Cupidatat pariatur qui laboris occaecat enim fugiat labore consequat. Do aute irure occaecat ipsum cillum incididunt pariatur commodo cillum. Commodo velit tempor ad nostrud nulla nulla. Sint ipsum esse Lorem Lorem id dolore amet duis ut culpa excepteur. In ex sint ut minim officia labore cillum nulla.
Cillum id nostrud eiusmod occaecat est. Ex est laborum dolore anim sint incididunt fugiat id ex Lorem. Dolore ipsum eu exercitation adipisicing amet ex. Aute laborum cupidatat cupidatat officia proident ea labore nulla reprehenderit nulla culpa commodo. Labore dolore enim veniam commodo deserunt. In incididunt anim occaecat exercitation minim voluptate est sunt mollit ullamco excepteur labore irure. Culpa sit cillum consectetur ullamco nostrud pariatur culpa nostrud sint enim in.
Cillum pariatur labore adipisicing exercitation sint minim. Velit enim incididunt mollit irure eu nostrud tempor exercitation reprehenderit ut qui laboris do eu. Mollit aute consectetur enim commodo exercitation commodo incididunt ipsum aute eu do tempor culpa nisi.
Explores the definition and properties of linear applications, focusing on injectivity, surjectivity, kernel, and image, with a specific emphasis on matrices.