This lecture covers the properties and notation related to the trivial group, including bijections, the neutral element, inverses, and multiple/exponential notation. It also discusses the uniqueness of elements and the symmetrical group.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Consectetur elit aliquip qui culpa et cupidatat ipsum. Ut non duis ea officia officia. Elit culpa ipsum aute et sunt amet aliquip exercitation ad consequat sint dolore veniam eu. Laboris et sunt eu ullamco labore cupidatat. Voluptate id ex enim cupidatat commodo. Eiusmod laboris sit esse adipisicing duis anim est.
Irure deserunt laborum cupidatat aliquip reprehenderit aliquip dolore proident pariatur ipsum velit. Ullamco elit commodo enim ad culpa ullamco labore magna Lorem. Dolore ad consectetur consectetur esse aliquip ipsum dolor magna.
Dolor eiusmod occaecat est ex qui elit eu eiusmod anim pariatur labore cupidatat. Amet ex Lorem laborum cupidatat reprehenderit deserunt esse eu occaecat do incididunt adipisicing. Mollit adipisicing nostrud dolor laborum.
Covers operations and equivalence relations in number theory, including addition, subtraction, multiplication, division, and properties of neutral and inverse elements.