**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Classification of Extensions

Description

This lecture covers the classification of extensions in group theory, focusing on split extensions and semi-direct products. The instructor explains the concept of a split extension and its equivalence to a semi-direct product. The lecture delves into the properties of extensions, such as group homomorphisms and conjugation. It also discusses the conditions for an extension to be considered split and the bijection between conjugacy classes. The presentation concludes with the implications of factor sets and the role of 2-cocycles in determining the equivalence of extensions.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

Related concepts (264)

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group acts on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it.

In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equation. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0).

In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, D_n or Dih_n refers to the symmetries of the n-gon, a group of order 2n. In abstract algebra, D_2n refers to this same dihedral group.

In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose).

Related lectures (1,000)

Group CohomologyMATH-506: Topology IV.b - cohomology rings

Covers the concept of group cohomology, focusing on chain complexes, cochain complexes, cup products, and group rings.

Cohomology Groups: Hopf FormulaMATH-506: Topology IV.b - cohomology rings

Explores the Hopf formula in cohomology groups, emphasizing the 4-term exact sequence and its implications.

Cross Product in CohomologyMATH-506: Topology IV.b - cohomology rings

Explores the cross product in cohomology, covering its properties and applications in homotopy.

Bar Construction: Homology Groups and Classifying SpaceMATH-506: Topology IV.b - cohomology rings

Covers the bar construction method, homology groups, classifying space, and the Hopf formula.

Fundamental GroupsMATH-410: Riemann surfaces

Explores fundamental groups, homotopy classes, and coverings in connected manifolds.