**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Advanced Physics I

Description

This lecture covers topics such as velocity and acceleration of a point, general principles of solid body dynamics, moments of inertia, kinetic energy storage systems, and rotation around a fixed instantaneous axis parallel to a symmetry axis.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Instructor

In course

PHYS-100: Advanced physics I (mechanics)

La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l

Related concepts (217)

Acceleration

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes: the net balance of all external forces acting onto that object — magnitude is directly proportional to this net resulting force; that object's mass, depending on the materials out of which it is made — magnitude is inversely proportional to the object's mass.

Velocity

Velocity is the speed and the direction of motion of an object. Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity: both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called , being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector.

Energy storage

Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production. A device that stores energy is generally called an accumulator or battery. Energy comes in multiple forms including radiation, chemical, gravitational potential, electrical potential, electricity, elevated temperature, latent heat and kinetic. Energy storage involves converting energy from forms that are difficult to store to more conveniently or economically storable forms.

Parallel computing

Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.

Rotation matrix

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system. To perform the rotation on a plane point with standard coordinates v = (x, y), it should be written as a column vector, and multiplied by the matrix R: If x and y are the endpoint coordinates of a vector, where x is cosine and y is sine, then the above equations become the trigonometric summation angle formulae.

Related lectures (1,000)

Wheel and Thread: Static Equilibrium and Rolling MotionPHYS-101(g): General physics : mechanics

Covers the static equilibrium and motion of a wheel using a thread.

Angular Momentum Theorem: Gyroscope DynamicsPHYS-101(g): General physics : mechanics

Explores the angular momentum theorem in gyroscope dynamics and symmetrical motion.

Virtual Work in Structural Mechanics

Explores virtual work in structural mechanics, emphasizing equilibrium states and the application of virtual displacements.

Rotation Dynamics: Symmetry and Gyroscopic Effects

Explores rotation dynamics, symmetry, and gyroscopic effects in physics.

Physics 1: Harmonic Oscillator and Spherical CoordinatesPHYS-101(g): General physics : mechanics

Explores harmonic oscillators, pendulum movement, and spherical coordinates in physics.