Lecture

Linear Approximations: Development Order 2

In course
DEMO: nisi fugiat
Nostrud amet mollit irure magna aliqua excepteur enim incididunt labore magna. Eiusmod non duis proident excepteur. Occaecat est labore mollit aliqua nostrud consectetur ullamco labore minim ut consectetur. Reprehenderit incididunt ad exercitation commodo sunt adipisicing.
Login to see this section
Description

This lecture covers the development of linear approximations up to order 2, focusing on the limited development of functions around a point. It explores the concept of linear approximation, Hessian matrix, and Taylor polynomials of order 2. The lecture also delves into the symmetric property of the Hessian matrix and the Taylor polynomial of order 2. Various examples and calculations are provided to illustrate the application of these concepts.

Instructors (3)
cillum pariatur dolore laborum
Proident ea ea excepteur deserunt adipisicing nostrud velit officia do nulla consectetur adipisicing. Veniam officia enim aute duis. Minim proident adipisicing adipisicing fugiat aliquip id cillum ad sit reprehenderit ut occaecat do. Sunt id sint ullamco labore ex anim est quis magna veniam fugiat. Duis veniam culpa consectetur amet nostrud sint id eu pariatur qui ullamco ullamco elit. Est exercitation reprehenderit sunt dolore aliqua velit eiusmod proident. Ullamco aliquip quis ullamco magna esse proident deserunt cupidatat magna et laboris ut.
consectetur officia culpa amet
Ut proident deserunt anim magna dolor amet nisi ipsum cillum. Enim sunt pariatur esse enim occaecat ut ex ea veniam cupidatat. Ipsum ullamco laboris voluptate excepteur duis deserunt sint do aute labore eu sint officia. Irure nostrud sunt officia mollit sit officia nulla consectetur aliquip laborum et quis aliqua excepteur. Ipsum nisi laborum dolor magna ipsum.
quis commodo sunt ut
Qui in do ut nisi eu labore. In do eiusmod eu fugiat est amet aliqua in dolore et in dolor nostrud. Enim in duis sint et adipisicing voluptate reprehenderit culpa proident ad in veniam ipsum dolore.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (61)
Approximating Functions with Taylor Series
Explores approximating functions with Taylor series, showcasing step-by-step calculations and practical applications.
Taylor's approximation: Analysis & Applications
Covers Taylor's approximation theorem, differentiability, error control, and function expansions.
Calculating with Taylor, Convexity
Covers calculating with Taylor series and convexity concepts, including sin(x) and cos(x) approximations.
Transforms of the Place
Explores the intuition behind transforms of the place and addresses audience questions on integral calculations and function choices.
Functions and Periodicity
Covers functions, including even and odd functions, periodicity, and function operations.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.