This lecture covers the concept of equivalence relations, including reflexivity, symmetry, and transitivity. It explains equivalence classes as sets of related elements and how they form partitions of a set.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Consectetur pariatur tempor ex tempor exercitation nulla est ex aliqua do laboris irure fugiat. Eu laboris anim pariatur aute id nulla elit nulla tempor aute nulla velit irure proident. Ea culpa ullamco anim ut est consequat nisi consequat laborum. Culpa sint duis mollit commodo nostrud anim minim dolore culpa. Velit quis ipsum qui deserunt qui elit ea ad eu. Reprehenderit enim consequat ut aliqua enim cupidatat officia.
Covers relations, sequences, and posets, emphasizing properties like anti-symmetry and transitivity, and introduces arithmetic and geometric progressions.