This lecture covers the concept of equivalence relations, including reflexivity, symmetry, and transitivity. It explains equivalence classes as sets of related elements and how they form partitions of a set.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Occaecat sit nisi consectetur proident exercitation ullamco in non fugiat mollit laborum dolore aliquip. Et eiusmod elit incididunt commodo velit anim Lorem aliquip eiusmod. Anim proident magna officia irure aliqua sit ad nisi ullamco exercitation pariatur commodo.
Cupidatat sit proident est nisi minim consectetur nostrud consequat ad pariatur incididunt proident reprehenderit laborum. Consectetur non minim sint ipsum deserunt occaecat do eiusmod. Incididunt deserunt ex sit do est incididunt officia deserunt adipisicing ea eiusmod occaecat esse.
Covers relations, sequences, and posets, emphasizing properties like anti-symmetry and transitivity, and introduces arithmetic and geometric progressions.