Spin structureIn differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in the definition of any theory with uncharged fermions. They are also of purely mathematical interest in differential geometry, algebraic topology, and K theory.
Spin groupIn mathematics the spin group Spin(n) is a Lie group whose underlying manifold is the double cover of the special orthogonal group SO(n) = SO(n, R), such that there exists a short exact sequence of Lie groups (when n ≠ 2) The group multiplication law on the double cover is given by lifting the multiplication on . As a Lie group, Spin(n) therefore shares its dimension, n(n − 1)/2, and its Lie algebra with the special orthogonal group. For n > 2, Spin(n) is simply connected and so coincides with the universal cover of SO(n).
Spin representationIn mathematics, the spin representations are particular projective representations of the orthogonal or special orthogonal groups in arbitrary dimension and signature (i.e., including indefinite orthogonal groups). More precisely, they are two equivalent representations of the spin groups, which are double covers of the special orthogonal groups. They are usually studied over the real or complex numbers, but they can be defined over other fields. Elements of a spin representation are called spinors.
Crystal growthA crystal is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions. Crystal growth is a major stage of a crystallization process, and consists of the addition of new atoms, ions, or polymer strings into the characteristic arrangement of the crystalline lattice. The growth typically follows an initial stage of either homogeneous or heterogeneous (surface catalyzed) nucleation, unless a "seed" crystal, purposely added to start the growth, was already present.
Spinor bundleIn differential geometry, given a spin structure on an -dimensional orientable Riemannian manifold one defines the spinor bundle to be the complex vector bundle associated to the corresponding principal bundle of spin frames over and the spin representation of its structure group on the space of spinors . A section of the spinor bundle is called a spinor field. Let be a spin structure on a Riemannian manifold that is, an equivariant lift of the oriented orthonormal frame bundle with respect to the double covering of the special orthogonal group by the spin group.