Lecture

Linear and Logistic Regression

In course
DEMO: velit consectetur dolore non
Lorem quis Lorem anim et quis consectetur culpa culpa non fugiat ullamco amet ipsum proident. Non excepteur ullamco id et ad proident. Duis esse eiusmod consectetur Lorem. Ea ex laboris eiusmod consequat. Nulla velit enim aliqua labore id aute.
Login to see this section
Description

This lecture introduces the concepts of linear and logistic regression. It covers the parametric approach, underfitting, overfitting, performance metrics, normal equation, gradient descent, multiple features, and the activation function. The instructor explains how to predict concrete strength and classify buildings based on size, emphasizing the importance of minimizing loss functions and understanding the trade-offs between model complexity, bias, and variance.

Instructors (2)
anim sunt occaecat est
Quis cillum qui esse excepteur excepteur sunt. Aliqua irure reprehenderit incididunt fugiat sint. Nisi culpa dolor aliquip laboris amet elit culpa consequat ex sint culpa dolor Lorem quis. Ipsum mollit aliqua ipsum sunt laborum amet cupidatat ad cillum quis consequat est. Labore Lorem deserunt exercitation officia aliquip Lorem velit.
ut commodo sit
Occaecat ipsum occaecat culpa dolor consequat eiusmod eu proident proident nisi do ipsum officia excepteur. Pariatur aliqua sint labore consequat excepteur tempor amet veniam. Laborum excepteur nisi mollit quis. Et ut velit consectetur proident consequat ex labore officia irure exercitation enim officia eu labore.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (39)
Polynomial Regression: Overview
Covers polynomial regression, flexibility impact, and underfitting vs overfitting.
Error Decomposition and Regression Methods
Covers error decomposition, polynomial regression, and K Nearest-Neighbors for flexible modeling and non-linear predictions.
Generalized Linear Regression: Classification
Explores Generalized Linear Regression, Classification, confusion matrices, ROC curves, and noise in data.
Flexibility of Models & Bias-Variance Trade-Off
Delves into the trade-off between model flexibility and bias-variance in error decomposition, polynomial regression, KNN, and the curse of dimensionality.
Linear Regression and Logistic Regression
Covers linear and logistic regression for regression and classification tasks, focusing on loss functions and model training.
Show more