Lecture

Stabilizer Formalism: Quantum Error Correction

In course
DEMO: est ex ex quis
Laborum nisi id consectetur laboris sit ipsum. Ullamco cupidatat labore ad sit quis proident exercitation commodo exercitation dolore. Excepteur reprehenderit tempor enim non magna veniam. Nostrud sunt adipisicing elit enim.
Login to see this section
Description

This lecture covers the stabilizer formalism in quantum error correction codes, defining quantum error correction codes based on stabilizer groups and exploring the transformation of error operators into orthogonal subspaces.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructor
eiusmod occaecat pariatur
Dolor in est officia enim quis cillum reprehenderit. Deserunt aliquip proident do consequat consectetur cupidatat ex nulla. Cupidatat dolor adipisicing nostrud reprehenderit excepteur aliqua Lorem deserunt officia in non. Labore culpa amet dolor irure velit et aliqua duis qui laborum sunt cupidatat.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (59)
Fault Tolerance: Stabilizer Formalism
Covers the stabilizer formalism and fault tolerance in quantum error correction.
Stabilizer Formalism: Kuill-Laflamme Theorem
Covers the Kuill-Laflamme theorem and the stabilizer formalism for Quantum Error Correcting Codes.
Quantum Error Correction: Knill-Laflamme Theorem
Explores the Knill-Laflamme theorem in quantum error correction and its importance in quantum computing.
Kirillov Paradigm for Heisenberg Group
Explores the Kirillov paradigm for the Heisenberg group and unitary representations.
Conformal Transformations: Theory and Applications
Explores the theory and applications of conformal transformations, covering special conformal transformations and isomorphic transformations.
Show more