Skip to main content
Graph
Search
fr
|
en
Login
Search
All
Categories
Concepts
Courses
Lectures
MOOCs
People
Practice
Publications
Startups
Units
Show all results for
Home
Lecture
Maximum Likelihood Estimation
Graph Chatbot
Related lectures (32)
Previous
Page 2 of 4
Next
Maximum Likelihood, MSE, Fisher Information, Cramér-Rao Bound
Explains maximum likelihood estimation, MSE, Fisher information, and Cramér-Rao bound in statistical inference.
Point Estimation in Statistics
Explores point estimation in statistics, discussing bias, variance, mean squared error, and consistency of estimators.
Maximum Likelihood Estimation
Covers Maximum Likelihood Estimation in statistical inference, discussing MLE properties, examples, and uniqueness in exponential families.
Bias and Variance in Estimation
Discusses bias and variance in statistical estimation, exploring the trade-off between accuracy and variability.
Spin Glasses and Bayesian Estimation
Covers the concepts of spin glasses and Bayesian estimation, focusing on observing and inferring information from a system closely.
Estimation: Linear Estimator
Explores linear estimation, optimal criteria, and the orthogonality principle for good choices in estimation.
Statistical Theory: Maximum Likelihood Estimation
Explores the consistency and asymptotic properties of the Maximum Likelihood Estimator, including challenges in proving its consistency and constructing MLE-like estimators.
Statistical Theory: Cramér-Rao Bound & Hypothesis Testing
Explores the Cramér-Rao bound, hypothesis testing, and optimality in statistical theory.
Point Estimation Methods: MOM and MLE
Explores point estimation methods like MOM and MLE, discussing bias, variance, and examples.
Optimality in Decision Theory: Unbiased Estimation
Explores optimality in decision theory and unbiased estimation, emphasizing sufficiency, completeness, and lower bounds for risk.